Worksheet \#1 - PHY102 (Spr. 2004)

This worksheet introduces you to the use of Mathematica. Mathematica is a programming language developed by Stephen Wolfram which has many applications, e.g., solving algebraic equations, differentiation, integration, making plots in two and three dimensions, etc.. You will also solve a couple of simple problems in mechanics using Mathematica.

Getting Started

1. Logging in. A computer account has been set up on the linux computers in the computer lab in BPS1240. You will be handed a sheet of paper with your login instructions by the instructor along with this worksheet. Sitting at a computer you should be faced with a login prompt. Go ahead and give your username. Use the password on the sheet of paper to \log in.
2. Start mozilla (click on the "earth" icon on the toolbar at the bottom of the screen) and access the group web-page (http://www.pa.msu.edu/courses /2004spring/phy102). This can also be accessed through the Physics and Astronomy department web-page: http://www.pa.msu.edu/ then "undergraduate programs" \rightarrow "course web pages (active or full list)" \rightarrow PHY102.
3. Get to know the linux operating system and basic commands and actions you will need to know to be able to do to carry out the assignments in this course. Download the "PHY102 Linux Help" help from the course home-page. You can print it out (print \rightarrow print. It will come out on the printer in BPS1240) or read it online.
4. To start a command window, "rightclick" on the mouse, then "click" on the "new terminal" option. Now follow the instructions on the hand out page to change your password to one you will remember (but which is still secure)
5. To start Mathematica enter "Mathematica \&" on a command line and then press "enter" on your keyboard.
6. From the courses www page, download and save the "getting started" mathematica notebook. Save it as yournameofchoice.nb This is a Mathematica notebook and mathematica recognizes the ".nb" extension. Open the notebook (file \rightarrow open). Glance through the notebook and try out some of the exercises. This is a handy reference which you will find useful later when you get into difficulties. It introduces some fairly advanced stuff which you don't need right now so don't spend too much time in it, just glance through, play a bit, see what's there, and go on to the exercises below:
7. Exercises. Do not overwrite these exercises as you are doing them as part of the assignment is to hand them in.
(a) open a new notebook and save it to a new name (e.g., week01.nb)
(b) Type your name in the top. Make sure that it is typed in a "text" group and not a "command group" (see the "getting started" notebook). Save the notebook again (develop good habits!)
(c) Type " $2+4$ " (now you do want to be in a "command group"...format \rightarrow Style \rightarrow Input). Hold down the "shift" button in the key board and push "enter" (each time you want to get the result for what you have typed, you have to type "shift+enter"). In the output the screen will give you back the result.
(d) Type " $10 / 2$ " to check that you'll get 5 in the output.
(e) To find the roots of an equation (e.g. $x^{2}-1$), type "Solve[x^2-1 $==0, \mathrm{x}]$ ". In the output you'll get +1 and -1 as the two roots.
(f) Copying: using the mouse, highlight "Solve $\left[x^{\wedge} 2-1==0, x\right]$ " that you typed above. Let go of the mouse button. Move the mouse down the page to a region below where you have typed. Click the middle mouse button if you have a three button mouse, click the left and right mouse buttons together (this takes some dexterity!) if you have a two-button mouse. This pastes the highlighted text. Alternatively, highlight then use edit \rightarrow copy and edit \rightarrow paste as familiar to microsoft windows users.
(g) Deleting: to edit and delete text you have typed, use the mouse and arrow and delete keys in the usual way. To delete a whole
group (including that pesky output you generated when you made a syntax error) highlight the group by clicking on the blue bracket at the right-hand side of the notebook. When the bracket is highlighted hit delete.
(h) Factorize the expression $x^{2}-1$ to get the roots. In order to do that type "Factor $\left[\mathrm{x}^{\wedge} 2-1\right]$ ", and check if you get $(x+1)(x-1)$.
(i) Mathematica has extensive plotting tools. For example plot the function $\sin (\mathrm{x})$. To do this type "Plot[Sin $[\mathrm{x}],\{\mathrm{x}, 0,6.28\}]$ ".
(j) Help??? Mathematica has an extensive online help library. Try looking up the $\sin (\mathrm{x})$ function to make sure you have the right format.
(k) Here is an example how you can perform differentiation using mathematica: suppose $f(x)=x^{n}$; then $\frac{d f}{d x}=n x^{n-1}$. To check it type " $\mathrm{D}\left[\mathrm{x}^{\wedge} \mathrm{n}, \mathrm{x}\right]$ " and see the output.
(l) Likewise, you can perform integration on $f(x)=x^{n}$. Type "Integrate $[\mathrm{x} \wedge \mathrm{n}, \mathrm{x}]$ " and assure yourself that you indeed get back $\frac{x^{n+1}}{1+n}$.

Assignment 1. - Deadline Monday Jan. 26th

1. Examples. Hand in the results of the mathematica operations you experimented with above.
2. Problem 1. The displacement of a particle undergoing one dimensional motion under constant acceleration is given by the equation $x(t)=u t+\frac{1}{2} a t^{2}$. Choose values of u and a that you think are physically reasonable. Find and plot $x(t)$ and $v(t)$ over a reasonable range of time (this depends on your choice of u and a). Note: In plotting, you can use "Plot $[\mathrm{x}[\mathrm{t}],\{\mathrm{t}, 0,5\}]$ " or "Plot[Evaluate $[\mathrm{x}[\mathrm{t}]],\{\mathrm{t}, 0,5\}]$ " after defining $\mathrm{x}[\mathrm{t}]$. Try both. What is the difference (look up Evaluate in help to find out)? Type a brief answer into your notebook (don't forget to set the style!).
