PHY 231C, INTRODUCTORY PHYSICS I, EXAM II, Oct. 13, 2003

Choose the best answer. For T/F problems, choose only ONE answer.

- 1. Consider the three masses ($m_1 = 1 \text{ kg}$, $m_2 = 2 \text{ kg}$, $m_3 = 3 \text{ kg}$) attached by light ropes which drape over the pulleys as shown above. If m_2 slides without friction along the table, what is the magnitude of its acceleration?
 - (a) 19.2 m/s^2
 - (b) 9.8 m/s^2
 - (c) 4.9 m/s^2
 - (d) 3.27 m/s^2
 - (e) 1.63 m/s^2
- 2. Consider the same figure from the previous problem. What is the minimum coefficient of static friction between m_2 and the table that will allow the masses to remain fixed?
 - (a) 0.167
 - (b) 0.333
 - (c) 0.5
 - (d) 1.0
 - (e) 1.5

- 3. A particle of mass 3.0 kg has an velocity of -10 m/s at time t = 0. If it is acted on by the force shown above, what is its velocity at time t = 4 s?
 - (a) -7.5 m/s
 - (b) 0 m/s
 - (c) 5 m/s
 - (d) 10 m/s
 - (e) 25 m/s

- 4. The rotor on a helicopter has a radius of 8.0 m and rotates at 480 revolutions per minute. What is the speed of the tip of the rotor? Give the answer as a fraction of the speed of sound, $v_{\text{sound}} = 343 \text{ m/s}$.
 - (a) 0.80
 - (b) 1.17
 - (c) 1.94
 - (d) 3.10
 - (e) 7.34

- 5. Consider the pulley system above which is holding the mass M in equilibrium. Assume each pulley is massless. Choose the ONE statement which is FALSE. If none are false, choose "e".
 - (a) $T_D = Mg$
 - (b) $T_A = T_C$
 - (c) $T_A + T_B > Mg$
 - (d) $T_C < Mg$.
 - (e) None of these statements is false.

- 6. The mass M_1 enters from the left with velocity v_0 and strikes a mass $M_2 > M_1$ which is initially at rest. The collision between the blocks is perfectly elastic. The mass M_2 then compresses the spring an amount x. Which ONE statement is FALSE.
 - (a) Immediately after the collision the mass M_1 will move to the left.
 - (b) The kinetic energy of M_2 immediately AFTER the collision is less than the kinetic energy of M_1 BEFORE the collision.
 - (c) The magnitude of the momentum of M_2 immediately AFTER the collision is greater than the magnitude of the momentum of M_1 BEFORE the collision.
 - (d) The magnitude of the momentum of M_1 immediately AFTER the collision is less than the magnitude of the momentum of M_1 BEFORE the collision.
 - (e) The maximum energy stored in the spring equals the initial kinetic energy of M_1 .

- 7. Consider twins named Bert and Ernie who are visiting a planet name Beta Sesame. Bert is at a distance R from the star standing on the planet's highest mountaintop, while Ernie is located a distance 2R in a spaceship moving in a stationary circular orbit. Assume the planet is not rotating. Which ONE statement is TRUE?
 - (a) Ernie's acceleration is zero.
 - (b) If Ernie were to step on a bathroom scale in the spaceship, the scale would register zero.
 - (c) The gravitational force experienced by Ernie acts parallel to his velocity.
 - (d) The gravitational attraction from Alpha Sesame acts with twice the force on Bert than on Ernie.
 - (e) If Bert were to hitch a ride on another spaceship orbiting the planet at a radius of R, Bert's spaceship would circle the planet in exactly the same time as Ernie's spaceship.
- 8. Bert and Ernie are both in stationary circular orbits about the star Alpha Sesame. Bert's orbit is at radius R while Ernie's orbit is at a radius 4R. Which ONE statement is TRUE?
 - (a) The period of Ernie's orbit equals the period of Bert's orbit.
 - (b) The period of Ernie's orbit is twice the period of Bert's orbit.
 - (c) The period of Ernie's orbit is 4 times the period of Bert's orbit.
 - (d) The period of Ernie's orbit is 8 times the period of Bert's orbit
 - (e) The period of Ernie's orbit is 16 times the period of Bert's orbit.

- 9. A bullet of mass m=15 g moving with an initial velocity v_0 is shot into a pendulum bob of mass M=75 g. The bullet becomes lodged into the bob. The pendulum bob is suspended by a light stiff rod of length L=2.45 m. What is the minimum value of v_0 such that the pendulum bob will barely swing through a complete vertical circle?
 - (a) 58.8 m/s
 - (b) 124.6 m/s
 - (c) 356.3 m/s
 - (d) 485.0 m/s
 - (e) 611.9 m/s

- 10. Consider the conical pendulum above, a mass on the end of a string, with the other end of the string fixed to the ceiling. Given the proper push, this pendulum can swing in a circle at an angle θ of 40° with respect to the vertical, maintaining the same height throughout its motion. If the mass of the pendulum is m=4.0 kg, and the length of the string is L=0.64 m, what is the speed of the mass as it swings?
 - (a) 0.0543 m/s
 - (b) 1.84 m/s
 - (c) 26.8 m/s
 - (d) 37.3 m/s
 - (e) 111.2 m/s

- 11. Consider the graph of position vs. time above. Which statement is false?
 - (a) For 0 < t < 3 s, the velocity is positive.
 - (b) At t = 3 s, the acceleration is negative.
 - (c) For 4 < t < 5.5 s, the acceleration is zero.
 - (d) At t = 3 s, the velocity is zero
 - (e) For all times shown on the graph, the acceleration is zero or less than zero.