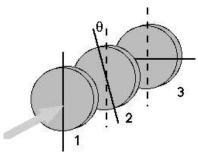
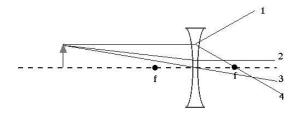

PHY 232C, INTRODUCTORY PHYSICS II, EXAM III, Nov. 10, 2003

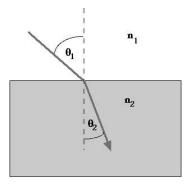
Choose the best answer. For T/F problems, choose only ONE answer.

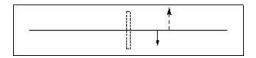


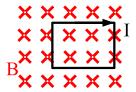
- 1. A series RLC circuit like the one above is running at the resonance frequency with V=110 volts rms. What is the power supplied by the source (W) if R=190 ohms, L=32 H, and C=0.57 $\mu\mathrm{F}$ (microfarad)
 - (a) 45.3 W
 - (b) 63.7 W
 - (c) 71.2 W
 - (d) 88.9 W
 - (e) 91.1 W
- 2. Consider the same figure as used in the previous problem. If R=1000 ohms, L=32 H and $C=0.57\mu\mathrm{F}$, what is the resonant frequency?
 - (a) 9.45 Hz
 - (b) 19.0 Hz
 - (c) 37.3 Hz
 - (d) 46.7 Hz
 - (e) 91.1 Hz



- 3. A transformer is used to reduce an AC source at f = 330 Hz from v1 = 1810 V to v2 = 110 V. If the secondary has 1630 turns, how many turns should there be in the primary?
 - (a) 408 turns
 - (b) 815 turns
 - (c) 1,630 turns
 - (d) 5,670 turns
 - (e) 26,800 turns


- 4. Which ONE of the following statements is FALSE?
 - (a) The dimensions of $\epsilon_0 \mu_0$ are $[T^2]/[L^2]$.
 - (b) When a wire carries an AC current, $I = I_0 \sin \omega t$, there will be electromagnetic radiation from the wire.
 - (c) When a wire carries an AC current, $I = I_0 \cos \omega t$, there will be electromagnetic radiation from the wire.
 - (d) The speed of electromagnetic waves in the vacuum depends on their wavelength.
 - (e) Two polaroids are each lined up perpendicular to incoming light with their transmission axes arranged 45° to one another. If the intensity after traversing the first polaroid is I, the amplitude after traversing the second polaroid is I/2.


- 5. Polarizers 1 and 3 have their axes of polarization, indicated by the black solid lines, perpendicular to each other. If you try to shine light through only the combination of 1 and 3, you will find that none passes through. However, now we put in another polarizer (number 2 in the figure) between number 1 and number 3. This polarizer has an axes of polarization that has an angle of 49° with respect to the polarization axes of polarizer 1. Surprisingly, now some light passes through the combination 1+2+3. What percentage of the initial (unpolarized) light intensity passes through?
 - (a) 53.92%
 - (b) 28.33%
 - (c) 17.4%
 - (d) 12.2%
 - (e) 8.33%
- 6. When an object is placed p = 130 cm in front of a convex mirror the image size is 40% of the object size. What is the focal length of the mirror in cm?
 - (a) 152.1 cm
 - (b) 65.0 cm
 - (c) 12.3 cm
 - (d) -55.1 cm
 - (e) -86.7 cm


- 7. Which ray(s) passing through a diverging lens is(are) not properly drawn?
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4
 - (e) 3 and 4

- 8. What is θ_2 ? DATA: $\theta_1=55^\circ, n_1=1.0, n_2=1.5$
 - (a) 23.1°
 - (b) 28.1°
 - (c) 33.1°
 - (d) 38.1°
 - (e) 43.1°
- 9. A far sighted professor can read the State News at $d=80~\rm cm,$ but no closer. What power (in diopters) lens should he use for reading? (i.e., be able to focus at paper at distance of 25 cm)
 - (a) -1.5
 - (b) -0.75
 - (c) 2.5
 - (d) 2.75
 - (e) 3.0

- 10. In the figure above, the object is represented by the solid arrow while the image is represented by the dashed arrow. What optical element is responsible for creating the image?
 - (a) Plane mirror
 - (b) Concave mirror
 - (c) Convex mirror
 - (d) Converging Lens
 - (e) Diverging Lens

- 11. Consider the square coil immersed in a magnetic field as shown above. Choose the ONE FALSE statement from the list (a-d). If none of statements is false, choose e.
 - (a) A current will be induced in the loop by a steady magnetic field B.
 - (b) A current will be induced in the loop by a decreasing magnetic field.
 - (c) A current will be induced in the loop by pulling the loop out of the region where there is a field.
 - (d) A current can be induced in the loop by rotating the loop.
 - (e) None of these statements is false.