Physics 410-2004
 Thermal Physics

Problem Set 1

1. A particle of mass m is confined in a cubic box of size L. The potential energy has the form

$$
U(x, y, z)=\left\{\begin{array}{c}
0, \quad 0<x, y, z<L \\
\infty, \quad \text { otherwise }
\end{array}\right.
$$

Find the 4th, 5th, and 6th energy levels in Fig. 1.2 of the textbook, p. 9 (3 pt). Consider a particle in a square box of size L. Find the lowest 4 energy levels and their multiplicities. (3 pt)
2. Consider the problem of flipping a coin. Prove that the probability that heads turn up n times if the coin is flipped N times is

$$
p_{n}=2^{-N} \frac{N!}{n!(N-n)!}, \quad n=0,1, \ldots, N
$$

(6pt).
3. The probability density for a classical harmonic oscillator of mass m and angular frequency ω to be at a distance q from the minimum of the potential energy is

$$
p(q)=C \exp \left[-m \omega^{2} q^{2} / 2 k_{B} T\right]
$$

where T is temperature and k_{B} is the Boltzmann constant. Find the constant $C(4 \mathrm{pt})$. Find the probability for an oscillator to be within the interval $\left(2 k_{B} T / m \omega^{2}\right)^{1 / 2}<q<$ $\left(3 k_{B} T / m \omega^{2}\right)^{1 / 2}(6 \mathrm{pt})$.

You need to have 20 points out of 22 (2 points are extra credit).

