Physics 410-2004 Thermal Physics

Problem Set 2

1. Consider a system of $N=100$ spins, each of magnetic moment $m=e \hbar /\left(2 m_{e}\right)\left(e\right.$ and m_{e} are the electron charge and mass), in a magnetic field $B=1 \mathrm{~T}$. Assume that, as a result of interaction between the magnetic moments, each energy level $-2 m s B$ ($2 s$ is the spin excess) is split, so that the energy levels of the stationary states fill the gap $2 m B$ between the levels with given s and $s+1$ uniformly. For $s=N^{1 / 2}$ find the distance between the energy levels of interacting moments. Make an estimate of how long it will take to determine that the system is in a stationary state. For what N (approximately) does this time become of the order of the age of the universe? (5 pt)
2. Provide details of the transition

$$
\sum_{s=-\infty}^{\infty} s^{2} P(N, s) \rightarrow \int_{-\infty}^{\infty} s^{2} P(N, s) d s
$$

and explain when it applies $(P(N, s)$ is the probability to have spin excess $2 s$ in a system of N spins) (6 pt)
3. Problem 6, Chapter 2 (4 pt)

You need to have 15 points
The problems are from Kittel \& Kroemer, Thermal Physics, 2nd edition, (Freeman, NY 1980).

