Physics 410-2004 Thermal Physics

Problem Set 3

1. Consider a particle of mass m confined in a one-dimensional potential box with walls at $x=0$ and $x=L$. (a) Plot a classical trajectory of the particle in phase space $(p, x) ;(2 \mathrm{pt})$ (b) Find the phase volume

$$
\Gamma_{0}(E)=\int_{E(p, x)<E} d p d x
$$

(here, $E(p, x)$ is the classical energy of a particle with coordinate x and momentum p) (2 pt); (c) Find the total number of quantum states with energies $\leq E$ assuming that $E \gg \hbar^{2} / 2 m L^{2}$. Compare the result with $\Gamma_{0}(E) / 2 \pi \hbar(3 \mathrm{pt})$
2. Solve the same problem for a harmonic oscillator with mass m and angular frequency ω. (a) Plot a classical trajectory of the oscillator in phase space ($p, x)(2 \mathrm{pt})$; (b) Find the phase volume $\Gamma_{0}(E)(2 \mathrm{pt})$; (c) Find the total number of quantum states with energies $\leq E$ assuming that $E \gg \hbar \omega$. Compare the result with $\Gamma_{0}(E) / 2 \pi \hbar(3 \mathrm{pt})$
3. Problem 1, Chapter 2 (5 pt)
4. Problem 5, Chapter 2 (6 pt)

You need to have 25 points

