Physics 410 - 2004 Thermal Physics

Problem Set 9

- 1. Relate the mean square fluctuation of the number of particles $\langle (N \langle N \rangle)^2 \rangle$ to the derivative $(\partial^2 p / \partial \mu^2)_{\tau,V}$ [*Hint:* Use the relation between the Ω -potential, pV, and \mathcal{Z}](8 pt)
- 2. Derive the interrelation between the potential Ω and the grand partition function (grand sum) \mathcal{Z} that was written in class, i.e., prove that the constant of integration in the solution of the differential equation that relates Ω to \mathcal{Z} is equal to zero (5 pt)
- 3. Chapter 5, p. 145, problem 1 (4 pt)
- 4. Chapter 5, p. 145, problem 2 (4 pt)
- 5. Two fermions are in a system that has three single-particle states, with energies $\varepsilon_1, \varepsilon_2, \varepsilon_3$, and is at temperature τ . Find the average energy of the system. (8 pt)

You need to have 25 points (4 extra credit points)

The problems are from Kittel & Kroemer, *Thermal Physics*, 2nd edition, (Freeman, NY 1980).