Physics 410-2004 Thermal Physics

Problem Set 9

1. Relate the mean square fluctuation of the number of particles $\left\langle(N-\langle N\rangle)^{2}\right\rangle$ to the derivative $\left(\partial^{2} p / \partial \mu^{2}\right)_{\tau, V}$ [Hint: Use the relation between the Ω-potential, $p V$, and $\left.\mathcal{Z}\right](8 \mathrm{pt})$
2. Derive the interrelation between the potential Ω and the grand partition function (grand sum) \mathcal{Z} that was written in class, i.e., prove that the constant of integration in the solution of the differential equation that relates Ω to \mathcal{Z} is equal to zero (5 pt)
3. Chapter 5, p. 145, problem 1 (4 pt)
4. Chapter 5, p. 145, problem 2 (4 pt)
5. Two fermions are in a system that has three single-particle states, with energies $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$, and is at temperature τ. Find the average energy of the system. (8 pt)

You need to have 25 points (4 extra credit points)
The problems are from Kittel \& Kroemer, Thermal Physics, 2nd edition, (Freeman, NY 1980).

