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Here is a review of my conventions.

1 Metric, et al.

The Minkowski tensor is gµν =


1 0 0 0
0 -1 0 0
0 0 -1 0
0 0 0 -1

 having the “signature” (1,−1,−1,−1). Convention-

ally, we refer to spacetime coordinates as contravariant 4-vectors, tensors of the 1st rank, with the index
up:

xµ = (x0, x1, x2, x3) (1)
= (ct, x, y, z) (2)
= [x0, ~x] or (x0,x) (3)

The context will delineate when the (. . .) is designating the contents of a fourvector or a real function. Of
course, “blackboard units” will generally prevail in which c = ~ = 1.

We contract with the metric tensor, gµν to change from contravariant to covariant tensors:

Tµ = gµνx
ν =

3∑
ν=0

g0νx
ν (4)

T0 = g00x
0 =

3∑
ν=0

g0νx
ν (5)

T1 =
3∑

ν=0

g1νx
ν (6)

= g11x
1 = (−1)x1 = −x etc (7)

So, this means that

xµ = (t,−x,−y,−z) (8)
= (x0, x1, x2, x3) (9)
= [x0,−~x] or (x0,−x) (10)
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Using the Einstein summation convention
gµνx

ν = xµ (11)

The inverse of gµν is gµν , so gµνg
µν = 1 which implies the double summation

∑3
ν=0

∑3
µ=0. So also, then,

gµν = gµν , as is obvious from the matrix representation. Conventionally, then

gµνgνα = gµ
α ≡ δµ

ν (12)

which is the 4-dimensional Kronecker delta “function” which has 1’s on the diagonal. It’s instructive to put
this together element by element:

gµνgνα =
3∑

ν=0

gµνgνα

= g00g0α + g01g1α + g02g2α + g03g3α (13)

In more detail:

g0
α = g00g0α + g01g1α + . . .

= g00g0α + 0 + 0 + 0 +
= 1× g0α for α = 0 or = 0 for α 6= 0 (14)

g1
α = 0 + g11g1α + 0 + 0

= −1× g1α = (−1)(−1) = 1 for α = 1 or = 0 for α 6= 1 (15)

Generally, for any tensors of any rank,

Aµν = gµαg
νβAαβ etc. (16)

The 4-dimensional dot product, or “inner product” is

AµBµ = A0B0 +A1B1 +A2B2 +A3B3

= AµBαgαµ

= A0Bαgα0 +A1Bαgα1 + . . .

= A0B0gα0 +A1B1g11 + . . .

= A0B0 −A1B1 −A2B2 −A3B3

= A0B0 − ~A · ~B
= A ·B (17)

...which is a scalar. The context for the use of the “dot” symbols will be obvious, whether 4-d or 3-d.

A “scalar” is an object which can be measured with a scale...doesn’t depend on a coordinate system. Then,
a “scalar field” is a function of coordinates which itself doesn’t change under coordinate transformation.

2 Coordinate Transformations

Consider two neighboring points, one point, A, at spacetime coordinate xµ and B at xµ + dxµ and another
coordinate system defined in terms of the first one, the “old” coordinates.

x′µ = fµ(xµ) (18)
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Then

dx′µ =
∂fµ(xµ)
∂xν

dxν

=
∂x′µ

∂xν
dxν

dx′µ ≡ Λµ
νdx

ν (19)

The relation expressed as Eq. 19 is a defining relation for any coordinate transformation. Any quantity that
transforms like a differential coordinate transformation, i.e., like 19 is a 4-vector, a contravariant vector.

Now consider a scalar function of coordinates, φ(xµ) and form the gradient of this function:

Aν ≡
∂φ(xµ)
∂xν

(20)

Notice the position of the spacetime indices in the numerator and denominator of Eq. 20. By the rules of
differentiation,

∂φ(xµ)
∂x′ν

= A′ν =
∂φ(xµ)
∂xσ

∂xσ

∂x′ν

A′ν =
∂xσ

∂x′ν
Aσ (21)

Look at the position of the primes in Eqs. 20 and ??— the quantity in front of Aσ in Eq. ?? is not Λσ
ν . This

is a different transformation equation, that of the gradient, which is a contravariant vector. If we contract
contravariant and covariant vectors, and transform them:

AµB
µ → A′µB

′µ = Aν
∂xν

∂x′µ
Bα ∂x

′µ

∂xα

= AνB
α ∂x

ν

∂x′µ
∂x′µ

∂xα

= AνB
α ∂x

ν

∂xα
(22)

Now, ∂xν

∂xα = δν
α, so A′µB

′µ = AνB
αδν

α = AνB
ν . That the transformed product has the same symbolic form

in either coordinate system, indicates that it is a scalar product.

2.1 The Lorentz Transformation

The transformation tensor, Lambda, has 16 components, but with the constraint that the interval must be
invariant. This makes the transformation consistent with relativity. So, ds2 = gµνdx

µdxν is unchanged
under the transformation:

ds′2 = ds2

gµνdx
′µdx′ν = gµνdx

αdxβ

gµνΛµ
ρdx

ρΛν
ξdx

ξ = gµνΛµ
ρΛν

ξdx
ρdxξ

= gαβdx
αdxβ

= gρξdx
ρdxξ (23)

The trick in Eq. 23 reflects the fact that the indices in the previous equation are just dummies, since they
are summed over, and can be labeled anything. Keeping in mind that since the indices are explicitly noted,
these terms are all just numbers and can be moved around at will. So,

Λµ
ρgµνΛν

ξ = gρξ = ΛT µ

ρgµνΛν
ξ (24)
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Doing the transpose flips the positions of the indices. Further, contracting gives ΛνρΛν
ξ = gρξ which is

called “pseudo orthogonality”. This is the equivalent of 10 conditions on the 16 components of the Lorentz
Transformation, leaving 6 independent parameters: 3 components of relative velocity and 3 components
of angle relating the ~x and the ~x′ space axes. For zero relative angles, then the transformations are the
familiar Pure Lorentz Transformations. For example, for relative velocites along the x1 axes: Λν

(1)ν =
γ − β1γ 0 0

− β1γ γ 0 0
0 0 1 0
0 0 0 1


The inverse transformation is:

dxα =
∂xα

∂x′µ
dx′µ

=
∂xα

∂x′µ
∂x′µ

∂xν︸ ︷︷ ︸
δα

ν

dxν

and it is defined:

dxα = Λ−1α
µdx

′µ

dxα = Λ−1α
µΛµ

β︸ ︷︷ ︸
must be δα

β

dxβ

The tensorial character of objects is defined by their Lorentz transformation properties. For example

• rank 0 φ = φ → scalar

• rank 1 A′µ = Λµ
νA

ν → contravariant vector, tensor of rank 1

• rank 2 A′αβ = Λα
µΛβ

νA
µν → contravariant tensor of rank 2

• rank 2 A′µν = ∂x′µ

∂xρ
∂xσ

∂x′ν A
ρ
σ = Λµ

ρA
ρ
σ

(
Λ−1

)σ

ν
→ mixed tensor of rank 2

• etc.

From Eq. 21, the 4-gradient gives:

∂A′µ

∂x′ρ
=

∂x′µ

∂xν

∂Aν

∂x′ρ
+

∂2x′µ

∂xν∂x′ρ
Aν

=
∂x′µ

∂xν

∂xα

∂x′ρ
∂Aν

∂xα
+

∂2x′µ

∂xν∂xα

∂xα

∂x′ρ
Aν

We’ll deal in only linear transformations for which the last term is zero. If the last term is not zero, then
the gradient of A′ is not a tensor and the affine connection in non- Euclidean geometries comes into play.

2.2 Standard Tensors

Useful are the following tensors:
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2.2.1 The Metric

This is gµν = gµν and is useful to raise and lower indices:

T ρ
µρ = gµνT

νσ
ρ (25)

gαβ and gαβ are reciprocals, which can easily be shown.

2.2.2 The 4-Gradient Operator

This quantity, while a rank-1 tensor, is not a 4-vector (because it does not transform according to the
definition of a 4-vector). Watch the placement of the indices, which influences the odd nature of the sign of
the space piece:

∂

∂xµ
≡ ∂µ =

[
∂/∂t,+~∇

]
(26)

∂

∂xµ
≡ ∂µ =

[
∂/∂t,−~∇

]
(27)

The, the 4-divergence is properly defined:

∂Aµ

∂xµ
= ∂µAµ =

∂A0

∂t
+ (−~∇) · (− ~A) (28)

=
∂A0

∂t
+ (~∇ · ~A) (29)

which is what one expects.

2.2.3 The Invariant D’Alembertian Operator

This is the double-derivative, or “box” operator:

∂

∂xµ

∂

xµ
≡ ∂µ∂

µ ≡ � =
∂2

∂t2
− ~∇2 (30)

2.2.4 The Antisymmetric Tensors

There are different conventions for these, so one has to check.

ε123 = −ε123 = −1 (31)
ε0123 = −ε0123 (32)
εµναβ = −ενµαβ (33)

The latter is called the Levi-Cevita Tensor. The completely antisymmetric nature of these is in the permu-
tation of the indices as in the last line. This means that any contraction with a symmetric tensor gives zero,
e.g. εµναβg

αβ = 0. Some useful contractions of Levi-Cevita Tensors are:

εµνσρεµνγδ = −2dσ
γδ

ρ
δ + 2δρ

γδ
σ
γ (34)

εµνσρεµνσδ = −3!δρ
γ (35)

εµναρεµνσρ = −4! (36)
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3 Dirac Equation

The Dirac Equation is an operator equation of the standard form:

Hψ =
i

~
∂ψ

∂t
(37)

−i~c~α · ~∇ψ + βmc2ψ =
i

~
∂ψ

∂t
(38)

Here, the Dirac matrices are:

β =


1 0 0 0
0 1 0 0
0 0 -1 0
0 0 0 -1

 (39)

~α =
(

0 ~σ
~σ 0

)
(40)

Of course, the matrix in Eq. 40 is short hand for a 4× 4 as the Pauli Matrices are implied here are;

σ1 =
(

0 1
1 0

)
; σ2 =

(
0 -i
i 0

)
; σ3 =

(
1 0
0 -1

)
(41)

So, in this representation1, the ψ are 4-component spinors. As usual, the Hamiltonian operator, H =
−i~c~α · ~∇+βmc2 proscribes what operators represent constants of the motion and explicit calculation shows
that the following are true:

[H,H] = 0 (42)[
H, pi

]
= 0 (43)

i
[
H, ~p · ~S

]
= 0 (44)

where

~S ≡ 1
2
~Σ (45)

~Σ ≡
(

~σ 0
0 ~σ

)
(46)

Notice that Eq. 44 says that helicity is a constant of the motion, and hence a good relativistic quantum
number for a fermion. Neither spin, nor angular momentum are, as can be shown explicitly:

[H,Si] 6= 0 (47)
[H,Li] 6= 0 (48)

The free-particle solutions will be chosen to be simultaneous eigenfunctions of both H and p.

The covariant form of the Dirac Equation comes from manipulating β and α to produce the “Dirac gamma
matrices:”

γ0 ≡ β (49)
~γ ≡ β~α (50)
γµ =

[
γ0, ~γ

]
(51)

1This is the minimum representation in order to satisfy Dirac’s requirement that the equation be of first order in spatial
derivatives. It is not unique.
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which satisfy the following anticommutation properties:

{γ0, γi} = 0
{γi, γj} = −2δij

}
⇒ {γµ, γν} = 2gµνI (52)

(Here, I signifies the 4× 4 unit matrix.) Particularly useful is the “slash” shorthand for the contraction of a
4-vector with a Dirac gamma matrix.

Aµγµ ≡ A/ (53)

With these definitions, the covariant Dirac Equation becomes:

(i~γµ∂µ −mc)ψ(x) = 0 (54)
(i∂/ −m)ψ = 0 (55)

where the second equation is explicitly in “blackboard units” and exhibits the slash notation for the 4-gradient
symbol. In momentum space, this is

(γµpµ −m)ψ = 0 (56)

3.1 Hermiticity Properties of Dirac Matrices

The useful relations involving conjugations are:

β† = β, so (γ0)† = γ0 Hermitian (57)

γ†i = (βαi)
† = α†β† (58)

= α†iβ = αiβ (59)

γ†i = −βαi = −γi antiHermitian (60)
also (61)
γµ† = γ0γµγ0 (62)

3.2 Free Particle Solutions

Another convention is
ψ̄ ≡ ψ†γ0 (63)

which allows for the construction of the conjugate (matrix) equation:

ψ̄
(
iγµ

←
∂ µ +m

)
= 0 (64)

ψ̄ (γµpµ +m) = 0 (65)

So, collecting all of the forms:

(i∂/ −m)ψ(x) = 0 (66)

ψ̄(x)
(
i
←
∂/ µ +m

)
= 0 (67)

(p/ µ −m)ψ(p) = 0 (68)

ψ̄(p)
(←
p/ +m

)
= 0 (69)
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Completing the general set, the Dirac Spinor is a 4-component object:

ψ(x) =


ψ1

ψ2

ψ3

ψ4

 (70)

3.2.1 Klein Gordon Connection

Remembering that the Klein Gordon equation is just a statement of the relativistic energy relation, as an
operator, then the Dirac Equation must be related. Take the Dirac Equation, Eq. 66 and operate from the
left by iγνγν to get

(−γνγµ∂ν∂µ − iγν∂νm)ψ = 0 (71)(
−γνγµ∂ν∂µ −m2

)
ψ = 0 (72)

where the Dirac Equation itself was used in the second term. We can write this second equation again, just
changing the dummy summed indices. Then add the two equations together:

(−γνγµ ∂ν∂µ︸ ︷︷ ︸
∂µ∂ν

−m2 − γµγν∂µ∂ν −m2)ψ = 0 (73)

[− (γνγµ + γµγν)︸ ︷︷ ︸
{γν ,γµ}

∂µ∂ν − 2m2] ψ = 0 (74)

(
−2γνµ∂µ∂νI− 2m2I

)
ψ = 0 (75)

where the Dirac-space matrices are now all diagonal, signified by the unit matrix, I. This means that there
is a separate equation for every component of ψ. With trivial simplification,(

∂µ∂ν +m2
)
ψa = 0 (76)(

� +m2
)
ψa = 0 (77)

So, each component of the Dirac spinor separately satisfies a Klein Gordon equation. This both demonstrates
the satisfaction of the relativistic momentum-energy relation, but also points out that the Dirac spinors satisfy
a wave equation, so solutions in waves can be readily assumed. With that, we can then postulate generally,

ψi(x) = Nui(p)e−ip·x (78)
= Nui(p)e−ip0x0+i~p·~x (79)

So, the proliferation of indices and vector spaces begins...

This Fourier splitting of the momentum and space pieces is familiar. The u′s are typically segregated into
the “upper” and the “lower” components, uA and uB , with a useful and standard shorthand of a 2 d spinor
space representing the 4 d spinor space:

u(p) =
(

uA(p)
uB(p)

)
=


u1

u2

u3

u4

 (80)

By putting this back into the Dirac Equation using the 2 d form, one can write a Schrodinger-like eigenvalue

equation using the Hamiltonian H =
(

m ~σ · ~p
~σ · ~p −m

)
which is of course a 4x4 matrix.(

(p0 −m) − ~σ · ~p
− ~σ · ~p (p0 +m)

) (
uA(p)
uB(p)

)
= 0 (81)
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Decoupling these equations into two 2x2 matrix equations involves setting the determinant to zero, which
results in a familiar constraint:

(p0 −m)9p0 +m)− (−~σ · ~p)(−~σ · ~p) = 0 (82)
p2
0 −m2 − ~σ · ~p~σ · ~p︸ ︷︷ ︸

~p·~p

= 0 (83)

p2
0 −m2 − ~p 2 = 0 or (84)

p0 = ~p 2 +m2 (85)

For a given momentum, the energy values will be p0 = ±
√
~p 2 +m2 = ±E, where E is a number and always,

E > 0.

If we choose here p0 = +E, then the coupled equations are(
(E −m) − ~σ · ~p
− ~σ · ~p (E +m)

) (
uA(p)
uB(p)

)
= 0 (86)

which leads to

uA =
~σ · ~p
E −m

uB (87)

uB =
~σ · ~p
E +m

uA leading to (88)(
E2 −m2

)
uA = ~p 2uA (89)

If we choose here p0 = −E, then the same steps give an identical equation. Within the A and the B
representations, the components of uA,B are arbitrary. For the states which are plane waves and eigenstates
of just energy/momentum, the convention is to choose u1 = and u2 = 0 or for the other solution, u1 = 0
and u2 = 1. The same thing holds for uB ’s states. Then, for the positive energy solution:

p0 = +E

u(p)+ = Nu(p) = N

(
uA

~σ·~p
E+muA

)
(90)

For example, solution 1 is explicitly:

u(p)(1)+ = N


1
0
p3

E+m
p1+ip2
E+m

 Solutions 1&2 are summarized as (91)

u(p)(1)+ = N

(
χ1,2

~σ·~p
E+mχ

1,2

)
(92)

Where

χ1 =
(

1
0

)
(93)

χ2 =
(

0
1

)
(94)

Likewise, for p0 = −E

u(p)− = Nu(p) = N

(
− ~σ·~p

E+muB

uB

)
(95)
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Solutions 1&2 are summarized as

u(p)(3,4)
− = N

(
− ~σ·~p

E+mχ
3,4

χ3,4

)
(96)

Where

χ3 =
(

1
0

)
(97)

χ4 =
(

0
1

)
(98)

3.2.2 Normalization

There are two conventions for spinor normalization. Both start from the general statement:

2pµū(p)u(p) = 2mu†u which for µ = 0 gives (99)

u†u =
p0

m
ū(p)u(p) (100)

The two conventions are

1 : u†u = γ =
p0

m
⇒ ū(p)u(p) = 1 (101)

2 : u†u = 2mγ = 2p0 ⇒ ū(p)u(p) = 2m (102)

We’ll use convention 2, as it’s kinder to massless fermions. So, then for the two energy conditions:

p0 = +E : ūi(p)uj(p) = 2mδij i, j = 1, 2 (103)
p0 = −E : ūi(p)uj(p) = −2mδij (104)

With this selection, from terms like Eq. 92, the overall spinor normalization can be determined. For our
choice, this turns out to be N =

√
E +m. With the definition p± ≡ p1 ± ip2, the explicit spinors as

eigenfunctions of energy and momentum are:

ψ1(x) =
√
E +m


1
0
p3

E+m
p+

E+m

 e−iEt+i~p·~x (105)

ψ2(x) =
√
E +m


0
1

p−
E+m
−p3

E+m

 e−iEt+i~p·~x (106)

ψ3(x) =
√
E +m


−p3

E+m
−p+
E+m

1
0

 eiEt+i~p·~x (107)

ψ4(x) =
√
E +m


−p−
E+m

p3
E+m

0
1

 eiEt+i~p·~x (108)

C
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3.2.3 Negative Energy Solutions

By an analysis of the charge conjugation properties of the Dirac spinor solutions and the simple (algebraic)
observation that

e−ip0t︸ ︷︷ ︸
an electron wavefunction for +E

= e−i(−p0)(−t)︸ ︷︷ ︸
an electron wavefunction for -E and backwards in time

, (109)

the charge conjugate states, ψCi can be related to the negative energy states, 3, 4:

ψC1(~p) = −ψ4(−~p) and E > 0 for e+ (110)
ψC2(~p) = +ψ3(−~p) and E > 0 for e+ (111)
ψC3(~p) = +ψ2( ~−p) and E < 0 for e+ (112)
ψC4(~p) = −ψ1( ~−p) and E < 0 for e+ (113)

So, the negative energy solutions can be gotten rid of altogether by choosing the physical states to be
ψ1, ψ2, ψC1, ψC2. This leads to the familiar definitions for the momentum space spinors for physical electron
and positron (fermion and antifermion) states:

u1(p) = electron with E > 0 and “spin” = 1/2 (114)
u2(p) = electron with E > 0 and “spin” = -1/2 (115)

v1(p) ≡ uC1(p) = positron with E > 0 and “spin” = 1/2 (116)
v2(p) ≡ uC2(p) = positron with E > 0 and “spin” = -1/2 (117)

The v′s satisfy a Dirac Equation, but for the opposite pµ. So, here then is the summary of the relevant
physical relationships:

(p/ −m)ui(p) = 0 (118)
(p/ +m) vi(p) = 0 (119)
ū(p) (p/ −m) = 0 (120)
v̄(p) (p/ +m) = 0 (121)
ūi(p)uj(p) = 2mδij (122)

u†iuj = 2Eδij (123)
v̄i(p)vj(p) = −2mδij (124)

v†i vj = 2Eδij (125)
v̄u = ūv = 0 (126)

us(p) =
√
E +m

(
χs

~σ·~p
E+mχ

s where i = 1, 2

)
(127)

vs(p) =
√
E +m

(
~σ·~p

E+mχ
−s

χ−s

)
where i = 1, 2and (128)

χ1 =
(

1
0

)
= +1/2 in rest frame (129)

χ2 =
(

0
1

)
= −1/2 ” (130)

χ−1 =
(

1
0

)
= 11/2 in rest frame (131)

χ−2 =
(

0
1

)
= +1/2 ” (132)
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The important thing to notice about this choice: these are not eigenstates of helicity, only of energy and
momentum. The simple “Pauli-like” spinor for the “spin” part is a particular choice, not a general one.
That is, a direction in space has already been chosen.

Completeness is important. The original 4 spinors, positive and negative energy states, form a complete set:

4∑
j=1

u(j)(p)iu
(j)(p)†m = 2p0δimI (133)

Notice all of the different vector spaces in this equation: the spinor components are represented by the j index.
This is a matrix equation—an outer product— and each matrix element of that 4× 4 is represented...these
are the i,m indices. FInally, there is a spacetime index, namely the 0 in the four momentum p. With the
positron states, Completeness takes on a different form:

2∑
j=1

u(j)(p)iū
(j)(p)m −

2∑
j=1

v(j)(p)iv̄
(j)(p)m = δim2m (134)

3.2.4 Cleanup

Finally, remember that there are useful Diracology terms. Arbitrarily:

σµν ≡ i/2 [γµ, γν ] (135)

γ5 ≡ iγ0γ1γ2γ3 =
(

0 1
1 0

)
(136)

γ5† = γ5 (137)
γ5γ5 = I (138){

γ5, γµ
}

= 0 (139)
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