Newton's Laws of Motion

\& Gravity-14 Sept

De Revolutionibus Orbium Coelestium Copernicus, 1543
Astronomia Nova, Kepler, 1609
Philosophiae Naturalis Principia Mathematica, Isaac Newton (at 47) by Godrrey Kneller Newton, 1687

Trustee of the Portsy bodirey
Nature and Nature's laws lay hid in www.huntington.orggLLibarayDDiv/Newton/Newtonexhibit. night:/ God said, Let Newton be! and all was light. -Newton's epitaph by Alexander Pope

- Newton: Same laws apply to a falling apple \& moving planet.
- Description of motion
- Gravity $\propto 1 / R^{2}$ implies K's $3^{\text {rd }}$ Law

Copernicus	$1473-1543$
Columbus sails	1492
Tycho Brahe	$1546-1601$
Shakespeare	$1564-1616$
Johannes Kepler	$1571-1630$
Jamestown	1607
King James Bible	1611
Harvard College	1636
Isaac Newton	$1642-1727$
George Washington	$1732-1799$

"Natural" Motion for Newton \& Aristotle

- Natural motion is motion that needs no explanation: the object naturally moves that way
- Aristotle: For heavenly objects, natural motion is motion in a circle with the same speed. For base objects, natural motion is rest.

A book falls off the table and comes to rest on the floor. This needs no A book alls off the table and comes to rest
explanation because rest is the natural state.

- Newton: Natural motion is moving at the same speed in the same direction

Newton's First Law: In the absence of a force, an object moves at the same speed in the same direction.

1. A book falls off the table and lands on the floor. For Newton, what is natural?
a. The book is on the floor
b. The book is halfway to the floor
c. The book is just starting to fall
d. I push the book off the table

"Natural" Motion for Newton \& Aristotle

- Natural motion is motion that needs no explanation: the object naturally moves that way
- Aristotle: For heavenly objects, natural motion is motion in a circl with the same speed. For base objects, natural motion is rest.

A book falls off the table and comes to rest on the floor. This needs no A book faiss off the table and comes to rest
explanation because rest is the natural state.

- Newton: Natural motion is moving at the same speed in the same direction.
Newton's First Law: In the absence of a force, an object moves at the same speed in the same direction.

2. Venus moves around the sun in a circle at the same speed. Does Newton consider this motion natural?
a. Yes, Venus is a heavenly object
b. Yes, the speed is the same
c. No, the direction is not always the same.
d. No, Venus is not at rest

Newton's Second Law

- Newton's First Law: In the absence of a force, an object moves at the same speed in the same direction.
- Newton's Second Law tells how to find the motion if there is a force.

Force $=$ mass x acceleration $F=m x a$
Acceleration is change in
velocity divided by amount of time dided by amount of

- Q3 The velocity changed in
a. Case A only
b. Case B only
c. Neither cases A nor B
d. Both cases A and B
- Q4 The acceleration is greatest for which case?

Newton discovers the law of gravity

- Newton was sitting under an apple tree and looking at the moon. An apple falls on his head. Newton realizes the moon and the apple fall for the same reason. He does a quick
calculation and concludes that the force of gravity decreases as the square of the distance.
- In a second, an apple falls 5 m .
- The moon stays up in the sky What does Newton mean by "the moon falls?"
mes farther
- The moon is 60 times farther from the center of the earth than the apple.

Newton Implies Kepler's 3rd Law

- Easier derivation: Assume orbit is a circle. Ignore numerical constants such as π or 2 .
- Newton's Law of Gravity: Force between sun and planet

Force $=\mathrm{G}$ mass $_{\text {Sun }}$ mass $_{\text {Planet }} /$ Distance ${ }^{2} ; \mathrm{F}=\mathrm{G} \mathrm{M} \mathrm{m} / \mathrm{R}^{2}$

- Newton's $2^{\text {nd }}$ Law

Force $=$ mass $_{\text {Planet }}$ acceleration; $\mathrm{F}=\mathrm{m} \mathrm{a}$

- $\mathrm{G} \mathrm{M} \mathrm{m} / \mathrm{R}^{2}=\mathrm{m}$ a; mass of planet cancels out.
- Velocity is approximately R / P, where P is period. (It is exactly $2 \pi R / P$.)
- Acceleration, change in velocity/time, is approximately (R/P)/P
- $\mathrm{GM} / \mathrm{R}^{2}=\mathrm{a}=\mathrm{R} / \mathrm{P}^{2}$
- $\mathrm{P}^{2}=\mathrm{R}^{3} /(\mathrm{G} \mathrm{M})$
- More accurate derivation
$\mathrm{P}^{2}=4 \pi^{2} / \mathrm{G}^{3} /\left(\mathrm{M}_{\text {sun }}+\mathrm{m}_{\text {planet }}\right)$
$4 \pi^{2} / \mathrm{G}=2 \times 10^{30} \mathrm{~kg} \mathrm{yr}^{2} / \mathrm{AU}^{3}=1 \mathrm{M}_{\text {sun }} \mathrm{yr}^{2} / \mathrm{AU}^{3}$

Case A
-
Vel

- Velocity at start \longrightarrow
- Case B
$\xrightarrow{-}$ Velocity at start \quad Velocity after $1 \mathrm{~s}, ~ \longrightarrow$
- Case C
- Velocity at start

Case D

- Velocity at start

Velocity after 2 s
\qquad

