To Frame the World-19 Sept

- Kepler found orbit of Mars relative to earth's orbit.
- Goal was to measure the absolute distance (in miles or km) of the solar system
- Cassini \& Richer 1672

Hipparchus measures the
moon's distance~200BC

- At the Hellespont, the solar eclipse of 189BC was total. (Sparta defeated Athens there in 405 BC .)
- In Alexandria, the moon covered ${ }^{1 / 4}$
of the sun.
- "A clear picture is 90% of clear
thinking.
Draw a picture to show the relationship between the sun, the
moon, the two locations, and the difference between a total \& $1 / 4$ clipse. (The diameter of $\& 1 / 4$ $1 / 2$ degree.)

What triangle did Hipparchus use?

- Parts of triangle
- Angle is due to parallax: moon in foreground shifts with respect to sun in the background.
- One leg of triangle is the baseline.
- Other leg is distance to moon

Small angle approximation

- Measure angles in radians
- 2π radians $=360^{\circ}$
- Arc = radius * angle
- For entire circle,
- arc $=$ circumference $=2 \pi \mathrm{R}$
- angle $=2 \pi$
- For small angles, arc is
approximately equal to the
chord.
- Chord = radius * angle
- Application
- Baseline = Distance * angle
- $1000 \mathrm{~km}=$ Distance $* 1 / 8(\pi / 180)$

Difficulties

- Small angles are hard to measure
- Naked eye 0.03 deg
- Telescope used under ideal conditions: 0.1 arcsec $=0.00003$ deg
- Modern telescope with modern detector: 0.0000003 deg
- Moon
- Angle $=$ baseline $/$ distance $=1000 \mathrm{~km} / 400,000 \mathrm{~km}$ $=1 / 400=(180 / \pi) / 400=1 / 7$ degree
- Mars
- Angle=baseline $/$ distance $=1000 \mathrm{~km} / 80,000,000 \mathrm{~km}$
$=1 / 80,000=(180 / \pi) / 80,000=0.0007$ degree using Hellespont \& Alexandria
- Need a reference nearby in the sky
- Measuring with a reference on the ground is impossible.

Cassini \& Richer 1672

- Angle=baseline/distance
- What baseline should C\&R use to measure distance to Mars?

Cassini \& Richer 1672

- Angle=baseline/distance
- What baseline should C\&R use to measure distance to Mars?
- Cayenne-Paris baseline is 7000km.
- Angle=baseline/distance=7000 km/80,000,000km
$=9 \times 10^{-5} \mathrm{rad}=5 \times 10^{-3}$ degree $=18$ arcsec
- Shift is 18 times width of the star with modern telescope

To frame the world

A. Size of Earth measured
B. Periods of planets measured
C. K finds Mars orbit (1601)
D. K discovers $3^{\text {rd }}$ law (1618)
E. Cassini + Richer
measure Earth-Mars distance (1672) using Paris-Cayenne baseline

1. Draw an idea map for getting result 1, the SunMars distance in AU .
2. Draw an idea map for result 2.
3. Same for 3 .
4. Sun-Jupiter distance in feet
5. Sun-Mars distance in AU 2. Sun-Mars distance in feet
