When Radiation Ruled—26 Oct

- At present, radiation from the Big Bang is weak
 - \(T = 2.7 \text{ K} \)
 - Has no affect on history of universe
- In past, radiation from the Big Bang was
 - Hot enough to change matter
 - Denser than matter
- Temperature and expansion
 \(T / T_{\text{now}} = 1/a \)
 \(a = \text{Dist} / \text{Dist}_{\text{now}} \)

Rad: 0.6kg
\(T = 0.8 \times 10^9 \text{ K} \)

Matter: 0.1mg
\(T = 0.8 \times 10^9 \text{ K} \)

Expansion stretches wavelength of light

- We see black-body radiation with \(T=2.7 \text{ K} \), and wavelength at the peak intensity \(\lambda_{\text{max}} = 1 \text{ mm} \).
 \(\lambda_{\text{max}} = 2.7 \text{ mm-K} / T \) (Wein’s Law)
- Wavelength of radiation stretches same as universe expands.
 1. When the U was half the present size, what was the wavelength at the peak intensity and what was the temperature of the radiation? Not graded: What principle did you use?

Book-burning Universe

- At one time, the universe was hot enough to burn paper
 - Occurs at 451 F = 500 K.
 - (In reality, there was no carbon and no paper at that time.)
- Hoag’s object is 300 Mpc from the Milky Way. How far was it when the U was just hot enough to burn paper?

- What other reactions might have occurred when the universe was smaller & hotter?
Book-burning Universe

- What other reactions might have occurred when the universe was smaller & hotter?
- Events in the universe’s life
- Recombination: U changed from opaque to transparent
 - Chemical reaction
 - Free p + e \rightarrow hydrogen atom
- Production of helium
 - Nuclear reaction
 - Free protons + neutrons \rightarrow helium nucleus

How mass density changes

- Fill a 2-L bottle with an average of the present universe
- Matter
 - Mass = 2×10^{-27} kg
 - Same mass as 1 hydrogen atom
- Radiation (Light) has mass because radiation has energy
 - $E = mc^2$
- Radiation
 - 32 M photons in the bottle
 - Mass of each photon = 1.1×10^{-39} kg
 - Mass of light = 3.6×10^{-32} kg
 - Same mass as 1/50,000 hydrogen atom

How mass density changes

- Mass of matter = 2×10^{-27} kg
 - Same mass as 1 hydrogen atom
- Define expansion parameter
 - a = distance between two galaxies / present distance
 - The expansion parameter a changes from ___ at the Big Bang to ___ at the present.

5. (2 pts.) The matter in the 2-L bottle used to occupy a smaller volume. When universe half the present size, how much volume did the matter in the 2-L bottle fill? The mass density at that time was ___ that of the present mass density.