

Nov

- Finish formation of He
- Weighing galaxies

Ast 207 F2005

Weighing a Galaxy—7 Nov

- What is the mass of a galaxy?
 - Answer before 1974: Mass is that of stars & gas
 - Actual answer: Most mass is not that of star & gas
 - Most mass is dark
 Dark mass is less
- concentrated.

 Today: How to measure

mass
a 1974: Most mass here

Ast 207 F2005

NGC 3672 www.astro.princeton.edu/ -frei/Gcat_htm/Catalog/CJpeg/n3672.jpg

Fritz Zwicky 1898-1974 Vera Rubin 1928-

www.astrosurf.org/lombry /lmages/zwickyf.jpg

b1974: Mass here

- Near Earth Rendezvous (NEAR) orbited the asteroid Eros (and landed).
- Eros
- 20mi long, 8mi wide (size of Lansing)
- · Gravity is 1000 times weaker
 - You can leap 1000 times farther
 ½v²=g h
 - Speed limit is 20mph
 v²=g R
- On Earth, a ball dropped 1m takes 0.45s. How long would that take on Eros?
 - ½v²=g h; v=g t; t=(2h/g)¹²²
 t = 0.45s (1000)¹²=14s
- 1. How can you measure the mass of Eros with the satellite (without landing)?

Ast 207 F2005

Weighing the Sun

- To find mass of sun, measure period T & size R of a planet's orbit.
 - Kepler's 3^{rd} Law $GM = 4\pi^2 R^3 / T^2$
 - $M = R^3 / T^2$ for R in AU, T in years, and M in solar masses.
- 2. Under influence of the gravity of the sun, a planet moves a given distance. If the time is short, the mass is ____.

Mass	Test object	Motion	Behavior if more massive
Sun	Earth	An orbit	
Eros			
Earth			
Galaxy		Ast 207 F2005	

Weighing a Galaxy

- To find mass of sun, measure period T & size R of a planet's orbit.
 - Kepler's 3rd Law
 - $GM = 4\pi^2 R^3 / T^2$
 - $-\ M=R^3$ / T^2 for R in AU, T in years, and M in solar masses.
- Under influence of the gravity of the sun, a planet moves a given distance. If the time is short, the mass is greater. Write an equivalent statement for the galaxy NGC 3672.

Mass	Test object	Motion	Behavior if more massive
Sun	Earth	An orbit	Year is shorter
Eros			
Earth			
Galaxy			

Ast 207 F2005