$$
\mathrm{CC}-5 \mathrm{Dec}
$$

- Distant SN are 15% fainter than model with $\Omega=0$!
- Longer time to expand than universe having no mass at all
- Shorter time means expansion slowed down; longer time means expansion sped up.
- If motion takes longer than model with no mass, need "negative gravity" or "repulsive gravity."
- "Though a good deal is too strange to be believed, nothing is too strange to have happened." -Thomas Hardy

Source of Gravity

- Einstein's answer: mass and pressure $\mathrm{F}=\mathrm{G}\left(\mathrm{M}+3 \mathrm{PV} / \mathrm{c}^{2}\right) \mathrm{m} / \mathrm{R}^{2}$
- Newton's Law of gravity $\mathrm{F}=\mathrm{G} \mathrm{Mm} / \mathrm{R}^{2}$
$T_{\text {mater }}=M / V\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & (y /)^{2} & 0 & 0 \\ 0 & 0 & (y / c)^{2} & 0 \\ 0 & 0 & 0 & (y / c)^{2}\end{array}\right)$
- Einstein's Law of gravity

$$
\begin{array}{llll}
0 & 0 & 0 & (y / c)^{2}
\end{array}
$$

Curvature of space $=8 \pi \mathrm{G}$ Mass-Pressure $\mathbf{G}=8 \pi \mathrm{G} \mathbf{T}$
Object feels curvature of space and changes its
Gone \mathbf{T}
G \mathbf{T} are tensors having 16 component

- Ordinary matter has little pressure because speed is much smaller than c. $3 \mathrm{PV} / \mathrm{c}^{2}=\mathrm{M}(\mathrm{v} / \mathrm{c})^{2}$.
- Radiation has positive pressure
$3 \mathrm{PV} / \mathrm{c}^{2}=\mathrm{M}$.
$\mathrm{F}=\mathrm{G} 2 \mathrm{Mm} / \mathrm{R}^{2}$

Einstein's General Relativity

- What causes gravity?
- Newton's answer: mass
- Force of gravity between what's in the sphere and test mass m
$\mathrm{F}=\mathrm{GMm} / \mathrm{R}^{2}$.
- Einstein's answer: mass and pressure

- Force of gravity between what's in the sphere and test mass m
$\mathrm{F}=\mathrm{G}\left(\mathrm{M}+3 \mathrm{PV} / \mathrm{c}^{2}\right) \mathrm{m} / \mathrm{R}^{2}$

Cosmological Constant

- Einstein's answer: mass and pressure

$$
\text { Force: } \mathrm{F}=\mathrm{G}\left(\mathrm{M}+3 \mathrm{PV} / \mathrm{c}^{2}\right) \mathrm{m} / \mathrm{R}^{2}
$$

- Einstein's Law of gravity

$$
\text { Curvature of space }=8 \pi \mathrm{G} \text { Mass-Pressure }
$$

$$
\mathrm{G}=8 \pi \mathrm{G} \mathrm{~T}
$$

$$
T_{\text {mater }}=M / V\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & (y / c)^{2} & 0 & 0 \\
0 & 0 & (y /)^{2} & 0 \\
0 & 0 & 0 & (y / c)^{2}
\end{array}\right)
$$

$$
\begin{aligned}
& \text { Object feels curvature of space and changes its } \\
& \text { momentum }
\end{aligned}
$$

momentum

- Ordinary matter has little pressure because speed is $\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right)$ uch smaller than c . $3 \mathrm{PV} / \mathrm{c}^{2}=\mathrm{M}(\mathrm{v} / \mathrm{c})^{2}$.
$\left.I_{\mathrm{rad}}=M / V \begin{array}{cccc}0 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & \frac{1}{3}\end{array}\right)$
Radiation has positive pressur
Force $\mathrm{F}=\mathrm{G} 2 \mathrm{Mm} / \mathrm{R}^{2}$.
- Einstein in 1920s: My equations of gravity allow cosmological constant"
$-T_{\text {cc }}$ has same mathematical properties as $T_{\text {meter }}$ and $T_{\text {rad }} \quad\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0\end{array}\right)$

Write the force of gravity for the case of the $\quad T_{\mathrm{CC}}=M / V |$| 0 | -1 | 0 | 0 |
| :---: | :---: | :---: | :---: |
| rad | | | | cosmological constant. Watch the signs.

Ast 207 F2005
$\begin{array}{cccc}0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1\end{array}$
$\left.\begin{array}{llll}0 & 0 & 0 & -1\end{array}\right)$

Cosmological Constant

- Einstein's answer: mass and pressure Force: $\mathrm{F}=\mathrm{G}\left(\mathrm{M}+3 \mathrm{PV} / \mathrm{c}^{2}\right) \mathrm{m} / \mathrm{R}^{2}$
- Einstein's Law of gravity

$$
T_{\text {mater }}=M / V\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & (y / c)^{2} & 0 & 0 \\
0 & 0 & (y / c)^{2} & 0 \\
0 & 0 & 0 & (y / c)^{2}
\end{array}\right)
$$

Object feels curvature of space and changes its momentum

- Einstein in 1920 s . My equations of gravity allow $\quad\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$ "cosmological constant" ${ }^{\text {rad }}=M / V \left\lvert\, \begin{array}{cccc}0 & \frac{1}{3} & 0 & 0 \\ 0 & 0 & & 0\end{array}\right.$ - $\mathrm{T}_{\text {cc }}$ has same mathematical properties as $\mathrm{T}_{\text {matter }}$ and $\mathrm{T}_{\text {rad }}$. $\left.\quad \begin{array}{cccc}0 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & \frac{1}{3}\end{array}\right)$

Pauli: "What is not forbidden is mandatory.

1. Write the force of gravity for the case of the
cosmological constant. Watch the signs.
$\mathrm{F}=\mathrm{G}(\mathrm{M}-3 \mathrm{M}) \mathrm{m} / \mathrm{R}^{2}$
$\mathrm{F}=-\mathrm{G} 2 \mathrm{Mm} / \mathrm{R}^{2}$

$$
T_{\mathrm{CC}}=M / V\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

What is the Universe N

- Spherical sample of universe. R=moon's orbit. Sample has

$$
\begin{aligned}
& \text { Curvature } \\
& \mathrm{G}=8 \pi \mathrm{G}
\end{aligned}
$$

Weighing the Universe

with the Wilkinson Microwave

Anisotropy Probe (WMAP)

- Radiation from the Big Bang separated from matter when niverse became neutral (no ionized) at $\mathrm{a}=0.001$.
- CBR is a snapshot of U a
 300,000 yr.
- Motion: universe expands from $a=0.001$ to 1
- Timing: Observe the
temperature ripples, which have a length (age of
Universe)*(speed of light)

