

 Finisten's answer. mass and pressure F = G (M + 3PV/c²) m/R². Newton's Law of gravity T F = G M m/R². Einstein's Law of gravity Curvature of space = 8πG Mass-Pressure G = 8πG T Object feels curvature of space and change momentum G and T are tensors having 16 components Ordinary matter has little pressure because speed is much smaller than c. 3PV/c² = M (v/c)². Radiation has positive pressure 3PV/c² = M. F = G 2M m/R². 	$T_{matter} = M / V \begin{cases} 1 & 0 & 0 & 0 \\ 0 & (y_c')^2 & 0 & 0 \\ 0 & 0 & (y_c')^2 & 0 \\ 0 & 0 & 0 & (y_c')^2 \end{cases}$ est its $T_{md} = M / V \begin{cases} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & \frac{1}{3} \end{cases}$
--	--

Cosmological Constant	
• Einstein's answer: mass and pressure Force: $F = G (M + 3PV/c^2) m/R^2$. • Einstein's Law of gravity $T_{matter} = M / V \begin{pmatrix} 1 & 0 \\ 0 & (\gamma/c)^2 \\ 0 & 0 \\ G = 8\pi G T \\ - & Object feels curvature of space and changes its momentum \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 2 & 0 & 0 \\ (y'_{c})^{2} & 0 \\ 0 & (y'_{c})^{2} \end{pmatrix}$
• Ordinary matter has little pressure because speed is much smaller than c. $3PV/c^2 = M (v/c)^2$. $T_{md} = M / V \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
• Radiation has positive pressure $3PV/c^2 = M.$ Force F = G 2M m/R ² .	$ \begin{pmatrix} 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix} $
 Einstein in 1920s: My equations of gravity allow "cosmological constant" T_w has same mathematical properties as T_{wetter} and T_{wett}. 10 	
1. Write the force of gravity for the case of the $T_{\rm cc} = M/V \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0 -1 0 0 0 -1 0
Ast 207 F2005	0 0 -1)

Cosmological Constant
• Einstein's answer: mass and pressure Force: $F = G (M + 3PV/c^2) m/R^2$. • Einstein's Law of gravity $T_{matter} = M / V \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & (\chi'_c)^2 & 0 & 0 \\ 0 & 0 & (\chi'_c)^2 & 0 \\ 0 & 0 & 0 & (\chi'_c)^2 & 0 \\ 0 & 0 & 0 & (\chi'_c)^2 \end{pmatrix}$ - Object feels curvature of space and changes its
momentum $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & \frac{1}{3} \end{pmatrix}$ - Pauli: "What is not forbidden is mandatory."
1. Write the force of gravity for the case of the cosmological constant. Watch the signs. $F = G (M - 3M) m/R^2$ $F = -G 2M m/R^2$. - Repulsive gravity $T_{CC} = M / V \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix}$
Ast 207 F2005 $\begin{pmatrix} 0 & 0 & -1 \end{pmatrix}$

