Star	App mag	Abs mag	Spectral type	Distance (pc)
Sun	-26.74	4.83	G2	1/200,000
Sirius	-1.45	1.41	A1	2.7
Canopus	-0.73	-4.7	F0	60
Rigel Kentaurus	-0.1	4.3	G2	1.33
Arcturus	-0.6	-0.2	K0	11
Vega	0.04	0.5	A0	8.1
Capella	0.08	-0.6	G8	14
Rigel	0.11	-7.0	B8	93
Procyon	0.35	2.65	F5	3.5
Betelgeuse	0.8	-6	M2	200
Achernar	0.48	-2.2	B5	39
Hadar	0.60	-5.0	B1	120
Altair	0.77		A7	5.0
Aldebaran	0.85	-0.7	K5	21
Acrux	0.9	-3.5	B2	80
Spica	0.96	-3.4	B1	80
Antares	1.0	-4.7	M1	130
Fomalhaut	1.16	1.9	A3	7.0
Pollux	1.15	0.95	K0	11
Deneb	1.25	-7.3	A2	500
Mimosa	1.26	-4.7	B0	150

The Sun and the Twenty Brightest Stars.

- 1. **Hot-plate model of a star**. Imagine that you have made "stars" out of hot plates and you are plotting them on a Hertzsprung-Russell diagram
 - a. (3 pts.) How can you make two hot plates with the same spectral class and differing absolute magnitude?
 - b. (3 pts.) If you moved the hot plate to a greater distance, how would its place on the HR diagram change?
 - c. (3 pts.) If you turned the setting on the hot plate from "high" to "medium," how would its place in the HR diagram change?
- 2. **Hertzsprung-Russell Diagram**. You will need the information on the sun and the twenty brightest stars in the table.
 - a. (5 pts) Find the absolute magnitude of Altair.
 - b. (5 pts) Why would a diagram of *apparent* magnitude and spectral type be useless?
 - c. (5 pts) Plot all of the stars in the table on an H-R diagram. Use the spectral type for the horizontal axis and the absolute magnitude for the vertical axis. Make certain your axes run the right way.
 - d. (1 pts) From the H-R diagram, determine whether Arcturus is a dwarf or a giant. (2 pts) How did you figure this out?

- 3. Life on Deneb. Here you will find out what it means to live near a giant like Deneb. Recall that the luminosity of a star L=const $T^4 R^2$, where *T* is its temperature, *R* is its radius, and const is a constant.
 - a. (5 pts) In class we found that a star 10 times fainter has a magnitude +2.5 greater. This relationship between the flux f_A and f_B of two stars A and B and their magnitudes can be expressed mathematically as $m_A-m_B=-2.5 \log(f_A/f_B)$. How much brighter is Deneb than Sirius if both are placed at the same distance?
 - b. (5 pts) Sirius and Deneb have approximately the same temperature. How much larger is Deneb than Sirius.
 - c. (5 pts) The temperature of the sun is 5700K, and the temperature of Sirius is 9800K. How much larger is Sirius than the sun?
 - d. (2 pts) If Deneb replaced the sun, how long would sunrise take? The diameter of the real sun is 0.5°. With the real sun, 2min (24hr*0.5°/360°) elapse from when the edge of the sun is just visible to when the full sun is visible.