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Experiment 2 

Random Error and Basic Statistics 
Homework 2: Turn in at start of experiment. 

Readings: Taylor chapter 4: introduction, sections 4.1, 4.6 can be read together; then 
read the rest of chapter 4; then read chapter 5 through section 5.2.  Also the experiment 
will refer to the summary of results from error analysis which is linked to the syllabus. 

Do Taylor problems 4.2, 4.10, 4.16, and 4.23. For problem 4.2, do the calculation laid 
out in table style initially so you see exactly how it works; the entries in the table you can 
calculate either by a spreadsheet or with your calculator.  But if you use a spreadsheet, 
you should spot-check results with your calculator!  For 4.2 and 4.10, the checking 
calculations requested can be done with either your calculator, or (easier) Excel—but you 
should really do them (the purpose is to be sure you know how, and the check is that you 
get the right answer).  You can use either explicit formulas or the built-in functions. 

1. Introduction 
Contrary to the naïve expectation, the experiments in physics typically involve not only 
the measurements of various quantitative parameters of nature. In almost all the situations 
the experimentalist has also to present an argument showing how confident she is about 
the numeric values obtained. Among other things, this confidence in the validity of the 
presented numeric data strongly depends on the accuracy of the measurement procedure. 
As a simple example, it is impractical to measure a mass of a feather using the scale from 
the truck weighing station, which is hardly sensitive to the weight less than a few pounds. 

Another challenge has to be met when the scientist tries to compare the results of her 
experiment with the data from another experiments, or with the theoretical predictions. 
Since the conditions of the measurement almost always vary from an experiment to an 
experiment, and since they are also different from the idealized situation of the theoretical 
model, the compared values most likely will not match each other exactly. The task is 
then to figure out how important the factors creating this discrepancy are. If these factors 
are stable (do not change from measurement to measurement) and noticeable, they are 
called systematic errors. If, on the contrary, these factors are variable, they are 
called random, or statistical, errors. An important fact is that the uncertainty due to the 
random errors can be reduced by increasing the number of measurements to average over 
the random variations. 

The main purpose of this experiment is to introduce you to methods of dealing with the 
uncertainties of the experiment. The basic procedures to correctly estimate the 
uncertainty in the knowledge of the measured value (the error of the measurement) 
include:  
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• correct treatment of the random errors and systematic errors of the experiment 
(Taylor Chapters 4 and 5); 

• rounding off the insignificant digits in the directly measured and calculated 
quantities (Chapter 2 and the Appendix to this lab). 

2. Goals 
1. Understand basic statistical measures of uncertainty. 
2. Learn when standard deviation vs. standard deviation of the mean is appropriate. 
3. Distinguish between systematic and random errors. 
4. Learn one method for estimating the random errors. 
5. Learn how one way to estimate systematic errors. 
6. Test for a statistically significant difference from an expected value. 

3. Preliminary discussion (10-15 minutes). 
Before the lab, you are asked to read and understand the theoretical material for this lab 
(Exp 2 and Taylor). Before the experiment starts, your group needs to decide which 
information will be relevant to your experiment. Discuss what you will do in the lab and 
what preliminary knowledge is required for successful completion of each step. Warning: 
this lab is a bit short, and the next is a bit long. Don’t leave early: but start Exp3. 

Think hard about organizing your work in an efficient way. What measurements will 
you need to make? Go through your lab manual with a highlighter, then make checklist of 
the needed measurements. What tables or spreadsheets will you need to make to organize 
the calculations data? How should you use Kgraph to expedite your calculations and unit 
conversions (when necessary)?  What tables will you need to summarize your analysis 
and conclusions from the data? This lab will have more explicit reminders about tables 
than future labs, but you should be thinking about this organization of data taking, data 
reduction, and summarization in every lab. 

Questions for the preliminary discussion 

You should write your own answer to each question in your lab book, but leave space to 
change it after discussion.  If you do change your answer, say why. 

3.1 Calculators and computers typically return results with as many digits as possible, 
including digits well beyond our measurement uncertainty. What procedure will you 
follow to systematically get rid of these insignificant digits? 

3.2 What tables will you need to record your input data?  What tables will you need to 
summarize your results?  Scan the lab, write down your tables, then see Appendix 2. 

 



PHY191    Experiment 2:  Random Error and Basic Statistics   9/3/2005          Page 3

Random Uncertainties 

4.1 Introduction In this experiment we ask you to perform a simple repetitive 
measurement in order to investigate random and systematic errors.  The idea is that we 
will compare the time interval from the large digital “clock” at the front of the room, with 
a more precise instrument (the hand timers).  We want to perform a test to see if the time 
scale of the digital clock is correct or not—that is, whether using the large digital clock 
would cause systematic errors were we to use it to measure time.   

The problem we have is that although the timers have very accurate time scales, we need 
to use rather imprecise hand-eye coordination to operate them. The systematic error of 
the timers is small, and guaranteed by the manufacturer.  But you will have to measure 
the random error from your hand-eye coordination, since at the start you don’t know it.  
We will do it by repeating measurements of the same time interval on the large digital 
clock, and using the variation of the measurements to calculate the random error in a 
single time measurement.  We will then use the fact that by repeatedly measuring time 
intervals, we can decrease the uncertainty of our estimate of the wall clock counting rate.  
So we are using an understanding of random errors to measure an effect (clock count 
rate) which might be a systematic error if used in another experiment without correcting 
for it. 

4.2 Time Measurements 

At the front of the room is a large digital clock. Assume that it counts at a constant rate, 
but do not assume that the rate is one count per second. The clock will count from 1 to 
20, blank out for some unspecified length of time, and then begin counting again. To 
measure the clock's count rate, you will be given a timer whose systematic error is less 
than 0.001 seconds for time intervals of ten seconds or less. However, you will be relying 
on hand-eye coordination, which means your measurements will have random 
uncertainties. Your reaction time is unavoidably variable. You may also be systematically 
underestimating or overestimating the total time.  

Observe the clock.  Write down whether you believe the clock is counting reasonably 
close to one count per second. Also, before doing any measurements, guess how much 
your reaction time would vary from one measurement to the next (this is your initial 
guess for your random error). 

Now choose a counting interval at least 10 counts long, and time 25 of them. Write down 
in your notebook the initial and final clock count you use to define the interval.  

One person should time while the other records the data on the data sheet belonging to 
the person timing. To avoid an unconscious skewing of data, the person timing should not 
look at the data sheet until all 25 measurements have been recorded. This is essential; 
otherwise, you will introduce a bias into your measuring procedure! Make a few practice 
runs before taking data. Avoid starting a timing interval on the first count. Use the first of 
three counts to develop a tempo with which to synchronize your start. Exchange places 
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with your partner, and time 25 more counting intervals. Each person will have a data 
sheet with 25 timings recorded on it.  Assuming you have prepared well for the lab, you 
should both be able to analyze your own data.  In any case, you should provide your own 
answers to the questions at the end.  

5. Data Analysis 

5.1 Plot your data first!   Then if it is wildly non-Gaussian, make another trial before 
sinking a lot of analysis time.  Use Kgraph to make a histogram from your twenty-five 
measurements. The x axis should represent the time T, and the y axis should be the 
number of measurements which fall in the kth time bin. The data should be mainly peaked 
at a center value, and roughly symmetrical.  You can consult with your instructor to see 
whether to take more data.   

To analyze your data, you will calculate 3 quantities, the mean, the standard deviation, 
and the standard deviation of the mean value.  If the formulas don’t make sense to you, 
check Taylor chapter 4 again. The average or "mean" time per interval, T (pronounced 
“T bar”), is 
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where the Σ stands for a summation, Ti  represent the I-th single measurement of the time 
per interval, and N =  the number of measurements. This formula directs you to add up 
the N values of T, and divide by N.  Next you can use this value of T  to compute the 
standard deviation, σ, of the values of T, defined as:  
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Finally, the standard deviation of the mean value you arrived at is related to the standard 
deviation of the individual values: 

Nm
σ

=σ
                                                                  (3) 

The standard deviation of the mean σm , is the best estimate of the uncertainty in the 
measurement of the mean. Note that, unlike the standard deviation, this uncertainty can 
be made arbitrarily small by taking a sufficiently large number of measurements.  

5.2 To demonstrate that you understand them, write out the calculations of these three 
quantities explicitly (say with Excel but not using Excel statistical formulas) for the first 3 
measurements (N=3), as if these were the only data you had taken. You may then use the 
computer for the full 25 values. Find which item from Kgraph Functions | Statistics does 
this calculation for you (How could you check that you are looking at the right entry? 
Hint: try N=3 first before N=25).  You will need the values of σ and σm in what follows. 

5.3 Now predict howT, σ and σm vary with N, the number of measurements involved in 
their calculation.  Then use Kgraph to calculate them for the first N=3, 5, 10, and 25 (all) 
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of your measurements, again imagining that you had only the first 3, 5, 10, or 25 data 
points.  Then comment whether on your predictions for the changes as N gets larger are 
approximately correct.  In particular, why do σ and σm behave differently? 

5.4 Compare your N=25 value of σ with your previous guess of the variability of your 
reaction time. 

5.5 Now use Kgraph to make your final histogram from your twenty-five measurements.  
Adjust settings so the bin width is about w = 0.4σ Show the calculation in your notebook. 
How can you find the bin width Kgraph is using?   

5.6 Clearly mark the points of  T  and T  ± σ for your measurements. These quantities can 
be shown to be the best estimate of your measurement.   The region included in the range 
±σ should contain about 68% of your data points if your errors are random and 
consequently the distribution of your measurements is normal or Gaussian (Taylor, 
chapter 5). What fraction of your data lies within this range? 

5.7 Extra Credit: (Taylor Chapter 5.2 – 5.3) Draw on your histogram an appropriate 
Gaussian distribution given by a curve (function) of the form 
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To do this, you need values for the constants in the function g(T).  For T  and σ, use your 
best estimates for the mean and standard deviation of your time measurements.  Choose 
A to match your histogram.  Hint: what is the value of the function g(T) at T= T?  

Calculate g(T) at five points (Hint: Kgraph and Excel both use exp for the exponential 
function.).  Draw the points by hand on your histogram plot. Then connect these points 
with a smooth curve, which should resemble the Gaussian curves in Taylor. With a finite 
number of measurements such as 25, your histogram may not resemble the expected 
"bell" shape curve to a great degree. 

6. Drawing Conclusions from the Timing Measurements 

6.1 Calculate the time interval per clock tick (How is this related to T?).  Does it appear 
that the clock tick is 1.0 seconds, as we assumed at the beginning?  By how many % does 
your time differ from 1.0 seconds?  What is the uncertainty in your estimate? 

6.2 Next we will check to see is there a (statistically) significant discrepancy in the time 
measured by the large clock? We want to check the hypothesis that the large digital clock 
is running correctly. Statistical significance is tested for not by just looking at the size of 
the difference and saying “that seems small” or “looks big to me”.  Rather we compare 
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the relative size of the difference with the uncertainty of our measurement.  If the 
difference isn’t substantially larger than our uncertainty, then we say that our statistical 
analysis left us with information insufficient to reject our original hypothesis, and we say 
that the differences are not statistically significant.  We make the test quantitative by 
calculating the size of the discrepancy from expectations in units of the uncertainty of 
that difference.  The discrepancy we want is that between the average time counted, T , 
with its expected value Texp = (1 count/s) × (the number of counts in your interval).  
Following the uncertainties summary (linked to the syllabus), we use D =  T-  Texp. We 
use σm for δD, since that is our uncertainty in how well we know T, and there is no 
uncertainty in our prediction, Texp .  Then  
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This expression is the same as Eq. 5.67 on p. 150 of your text, and one of the boxed 
equations in the summary on uncertainties. Here, in accord with standard statistical 
notation, t has the meaning of the number of the standard deviations of the mean needed 
to cover the difference between the mean and expected times. In this equation, t is not a 
time: it has no units since both the numerator and denominator are in seconds. The 
statistic t is handy because we can make such a comparison for any measurement: the 
numerator D and denominator δD always have the same units, so t is always means 
“number of standard deviations”, a pure number on the same (dimensionless) scale, no 
matter what quantity was originally being measured.  Following the handout, and 
common statistical practice, we will say the deviation is statistically significant if |t|>2, 
that is the discrepancy is more than twice as big as our uncertainty.   

As you will see later, this should happen by chance only about 5% of the time.  Notice 
also if we make a sloppy measurement with a huge uncertainty δD, it will be hard to ever 
learn anything: it would be rare to have a large enough discrepancy to find a statistically 
significant difference from our starting assumption. 

Based on this calculation, is Tcompatible with Texp ?  That is, is the discrepancy 
(statistically) significant? 

6.3 Why is σm used instead of σ in the formula (5) above? 

6.4 Suppose you used the timer at the front of the room for timing measurements.  Would 
doing so cause a systematic error in measurements of time intervals? 

6.5 Suppose the difference was statistically significant and you needed to use the large 
digital clock as a timer on another experiment.  Based on your data, can you correct for 
its systematic error?  Explain how you would give the best estimate (in seconds) of a time 
interval of 120 counts.  What uncertainty would you report for that time interval? 
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6.6 Suppose you had recorded only your first 5 measurements. What would you have 
concluded about the existence of a significant discrepancy? Were the remaining 20 
measurements necessary in your opinion? Give a quantitative justification. 

6.7 Suppose you measured with the hand timer a different counter with a known period, 
and found your measured period was (statistically significantly) too low.  What kind of 
flaw in your measurement procedures might have caused this bias? 

6.8 What was the muddiest point of this experiment?  Where, specifically, should the 
write-up be improved?  
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Appendix 1. Significant Figures 
In the calculations, it is always important to distinguish significant from insignificant 
figures in the final presented numbers. The rules in Taylor section 2.2 describe things 
rather well.  We add the following comments.  

1. Since the error of the measurement is only an approximate estimate of the uncertainty 
of the measurement, we do not need to keep more than one or two largest digits in it. The 
smallest digit in the mean value should be of the same order as the smallest significant 
digit of the uncertainty. Examples:  

Incorrect  Correct 

517.436 m ± 12.34 cm  (avoid mixed 
units) 

517.4 ± 0.1 m or 517.44 ± 0.12 m 

24.3441364 ± 0.002 m/s 24.344 ± 0.002 m/s 

12385 s  ± 241 s 12400 ± 200  s  or 12390 ± 240  s or           
(1.239 ± .024)×104 s or (1.24 ± .02)×104 s 

 
2. When adding or subtracting two numbers, the result should have the same number of 
the significant digits after the decimal point as the least precise summand. Example:  

23.5527824.3445.517 =+  
3. When multiplying or dividing, the result should have the same total number of the 
significant digits as the least precise multiplier. Example:  

1234.3 × 23.45 ≈ 28940 
4. For other operations (raising to power, square root, exponent, sine) the rule is similar 
to the one for the multiplication and division: you should keep as many significant digits 
in the final result as you had in the input. Example:  

889.1567.3 ≈  
 
These rules apply for presentation of final results.  During multi-step calculations, keep 
one or 2 extra decimal places to avoid unintentional loss of significance. 
 

Appendix 2: Summary Table for Experiment 2: 

 all times in seconds  
N= mean std dev std dev mean 

3    
5    

10    
25    

 


