Problem HH15.2

The figure below shows a basic phase detector.
10k

An analog signal passes through a linear amplifier whose gain is reversed by a squarewave "reference" signal controlling an FET switch. The output signal passes through a low-pass filter, RC.

Let's assume we apply a signal $\mathrm{E}_{\mathrm{s}} \cos (\omega \mathrm{t}+\phi)$ to the phase detector with transitions at the zeros of $\sin \omega \mathrm{t}$, i.e. at $\mathrm{t}=0, \pi / \omega, 2 \pi / \omega$ etc. Let us further assume that we average the output, $\mathrm{V}_{\text {out }}$, by passing it through a low-pass filter whose time constant is longer than one period:

$$
\tau=\mathrm{RC} \gg \mathrm{~T}=2 \pi / \omega
$$

Then the low pass filter output is

$$
\left.\left\langle E_{s} \cos (\omega t+\phi)\right\rangle\right|_{0} ^{\pi / \omega}-\left.\left\langle E_{s} \cos (\omega t+\phi)\right\rangle\right|_{\pi / \omega} ^{2 \pi / \omega}
$$

where the brackets represent averages, and the minus sign comes from the gain reversal over alternate half cycles of $\mathrm{V}_{\text {ref }}$.

Show that

$$
\left\langle V_{\text {out }}\right\rangle=-\left(2 E_{s} / \pi\right) \sin \phi
$$

by doing the integrals and assuming unity gain for the amplifier

