PHY481: Electrostatics

Introductory E&M review (3)
Infinite sheet (again) - Gauss’s Law

- Infinite sheet of charge with surface density σ.
 - Pick a cylindrical Gaussian surface, radius r, passing through the sheet.
 - The dot product $\mathbf{E} \cdot d\mathbf{A}$ is non zero only on TWO the ends.

\[
\int_S \mathbf{E} \cdot d\mathbf{A} = 2E \left(\int_0^R r dr \int_0^{2\pi} d\phi \right)
\]

\[
2E(\pi R^2) = \frac{q_{encl}}{\varepsilon_0} = \frac{\sigma(\pi R^2)}{\varepsilon_0}
\]

\[
E = \frac{\sigma}{2\varepsilon_0}; \quad E = \pm \frac{\sigma}{2\varepsilon_0} \hat{k}
\]

\[
q_{encl} = \sigma(\pi R^2)
\]
Electric Potential Energy $U(x)$

- Potential energy change ΔU of charge q' in known field.
 - Obtained by calculating the work done by the field along path

\[
\Delta U = - \int_{r_1}^{r_2} \mathbf{F}_{\text{elec}} \cdot d\mathbf{s} = -q' \int_{r_1}^{r_2} \mathbf{E} \cdot d\mathbf{s}
\]

- Example: parallel plate capacitor

\[
\Delta U = q'E \int_{0}^{x} dx' = q'Ex
\]

- Move q' across entire capacitor

\[
\Delta U = U(d) - U(0) = q'E d
\]

U is a scalar!

Example graph showing parallel plate capacitor with electric field \mathbf{E} and charge q' moving across the capacitor. $U = 0$ at negative plate.
Electric potential $V(x)$

- Potential $V(x)$ is potential energy/unit test charge q'
 - The potential V is defined without the test charge q'

 $\Delta V = \frac{\Delta U}{q'} = -\int_{r_1}^{r_2} \textbf{E} \cdot ds$

 $U(x) = q'V(x)$

 U & V are a scalars!

- Example: parallel plate capacitor

 $V(x) = \frac{U(x)}{q'} = Ex$

 $V(d) = Ed$

- Equipotential surfaces
 - Electric field lines always cross equipotential surfaces at 90°.
 - In parallel plate capacitors equipotential surfaces are planes parallel to plates
Batteries, capacitors, and energy storage

- A battery moves charge Q between plates of area A
 - Battery moves electrons to create charge densities σ.
 - We have two expressions for electric field E!
 \[E = \frac{V_B}{d} \quad E = \frac{\sigma}{\varepsilon_0} \]
 - Find expression relating Q and V
 \[Q = \frac{\varepsilon_0 A}{d} V_B = CV_B \quad C = \frac{\varepsilon_0 A}{d} \]
 - Find energy stored while charging plates to Q
 \[U = \int dU = \int_0^Q Vdq = \int_0^Q \frac{q}{C} dq = \frac{Q^2}{2C} \]
 \[U = \frac{1}{2} CV_B^2 \]

Energy density

\[u = \frac{1}{2} \varepsilon_0 E^2 \]
Potential of a point charge

- Move test charge \(q' \) in known field of charge \(q \).
 - \(\Delta U \) is -work done by field in this motion

 \[
 \Delta U = -\int_{r_1}^{r_2} \mathbf{F}_{\text{elec}} \cdot d\mathbf{s} = -\frac{qq'}{4\pi\varepsilon_0} \int_{r_1}^{r_2} \frac{dr}{r^2}
 \]

 \[
 = \frac{qq'}{4\pi\varepsilon_0} \left[\frac{1}{r_2} - \frac{1}{r_1} \right] \quad (> 0)
 \]

- Potential of a point charge

\[
\Delta V = \frac{\Delta U}{q'} = V(r_2) - V(r_1)
\]

\(V \) is a scalar !

\[
V(r) = \frac{q}{4\pi\varepsilon_0 r}
\]

\(V(\infty) = 0 \)

\[
E = -\frac{dV}{dr} \hat{\mathbf{r}} = \frac{q}{4\pi\varepsilon_0 r^2} \hat{\mathbf{r}}
\]

becomes \(-\nabla V\)
Potential due to a charge distribution

- Two ways to get potential of a charge distribution
 - Line integral of a known electric field
 - Integration of point charge potentials

- Example: spherical shell with charge density σ
 - Electric field known from Gauss’s Law
 (same as point charge $r > R$, and zero $r < R$)
 - Potential obtained from line integral along \mathbf{E}

\[
\Delta V = -\int E \cdot ds \\
V(r) = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r}
\]

\[
\Delta V = -\frac{Q}{4\pi\varepsilon_0} \int_{R}^{r} \frac{dr}{r^2} = \frac{Q}{4\pi\varepsilon_0} \left[\frac{1}{r} - \frac{1}{R} \right]
\]

outside point charge potential

\[
V(r) = \frac{Q}{4\pi\varepsilon_0 r} \quad r \geq R \\
V(r) = \frac{Q}{4\pi\varepsilon_0 R} \quad r < R
\]

inside potential is constant
Potential by integration over point charges dq

- Potential on axis from ring with charge density λ

\[V(r) = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r} = \frac{\lambda R}{4\pi\varepsilon_0 \left(z^2 + R^2 \right)^{\frac{1}{2}}} \int_0^{2\pi} d\phi \]

\[= \frac{Q}{4\pi\varepsilon_0} \left(z^2 + R^2 \right)^{-\frac{1}{2}} \]

- Obtain \mathbf{E} on axis from $-\text{Gradient of } V$

\[\mathbf{E} = -\frac{dV}{dz} \hat{\mathbf{z}} = \frac{Q}{4\pi\varepsilon_0} z \left(z^2 + R^2 \right)^{-\frac{3}{2}} \hat{\mathbf{r}} \]

- Why V? More tools available to determine V than \mathbf{E}

Note: $z \left(z^2 + R^2 \right)^{-\frac{1}{2}} = \cos \theta$
Conductors and static electric fields

Move charge \(-q\) from small object to the surface of a metal. Object becomes charged \(+q\).

- When charges stop moving, the electric field within the conductor is zero, with charge only on the surface. Also, Gauss’s Law requires that the charge density within this conductor is zero.
- When charges stop moving, the components of the electric field parallel to the surface, \(E_\parallel = 0\). Also, Gauss’s Law requires that at the surface the electric field normal component, \(E_{\text{perp}} = \sigma / \varepsilon_0\).
- The electric potential is a constant throughout the conductor.
Magnetic fields

- A charge q moves at a velocity v in magnetic field B.
 - Force on the charge (use right hand rule for + charges)
 \[F = qv \times B \]
 - Circular motion for v perpendicular to B
 \[F = \frac{mv^2}{r} = qvB \]

- A current I flows in a thin wire
 - Force on small segment or on length L
 \[dF = I \, d\ell \times B \quad F = IL \times B \]
 - Force between parallel straight wires
 \[F = \frac{\mu_0 I_1 I_2 L}{4\pi d} \]
 \[\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A} \]
 \[B = \frac{\mu_0 I}{2\pi r} \]
 Attractive for same I's
 right hand rule
Magnetic fields from currents

- **Ampere’s Law**
 - Closed path integral around current \(I \)
 \[
 \oint \mathbf{B} \cdot d\mathbf{s} = \mu_0 I
 \]
 - Example: long straight wire carrying current \(I \)
 \[
 \oint \mathbf{B} \cdot d\mathbf{s} = 2\pi r B = \mu_0 I
 \]
 \[
 B = \frac{\mu_0 I}{2\pi r}; \quad \mathbf{B} = \frac{\mu_0 I}{2\pi r} \hat{\phi}
 \]

- **Biot-Savart Law**
 - Magnetic field from small current element \(d\mathbf{I} \)
 \[
 d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{I d\ell \times \hat{r}}{r^2}
 \]