January 19

- First homework
- Open "lessons" folder
- Start on Fri, $21^{\text {st }}$
- Must finish by 3:00 am, Wed $26^{\text {th }}$.
- Besides astronomy questions, you will register your clicker number on this assignment.
- Clicker questions now count in your grade
- The lowest 10% of your scores on clicker questions are
dropped.
- Outline
- Galileo disproves Ptolemy's earth-centered model of the solar system (left over from $15^{\text {th }}$)
- Tyco Brahe measures the positions of the planets
- Kepler finds "Laws" describing motion of the planets.

Galileo (1610) looks at the sky with a telescope

Discovered:

- Milky Way = myriads of stars
- Phases of Venus
-confirmed heliocentric model.
- Sunspots.
- Craters, maria on Moon.
- Rings of Saturn
- 4 Moons orbiting Jupiter.

Galileo's telescopes: ~ 1 " in diameter x 24-30" long

Galileo saw 4 moons orbiting Jupiter

Ptolem

What Galileo Saw:

The milky way $=$ jillions of stars

Questions on reading Chapter 3

1. When Kepler was a college student, the most accurate description of the motion of planets uses the terms
a. Velocity, position, \& acceleration
b. Circular orbits
c. Elliptical orbits
2. Same question
3. Today the most accurate description of the motion of planets uses the terms
a. Velocity, position, \& acceleration
b. Circular orbits
c. Elliptical orbits

Tycho Brahe's Observations -On Uraniborg, Tycho measured positions of the planets for 20 years
-Highly accurate \& reliable
-Accuracy limited by human eye, not by instruments. Superseded only with by instrum
telescopes.
-Tyco measured \& compensated for instrument flexure, the biggest error.

Revolving steel quadrant 2 m

 quadrant, 2 m radius (1588)Great quadrant (1582)

Brass azimuthal

 quadrant, 65 cm radius (ca 1576)

Johannes Kepler analyzes Tycho's data

- Kepler was Tycho’s assistant
- 20 yrs' data on planetary motions.
- Tycho tried to fit data with Ptolemy-like model.
- Kepler analyzed the data
- Found 3-d orbits from 2-d positions in the sky
- Concentrated on orbit of Mars.
- Had to subtract off Earth's (imperfectly known) orbit.
- Discovered 3 "laws," which describe the motions of all the planets

Brahe (1546-1601) Kepler (1571-1630)

- Their meeting at Benatek (in Czechoslovakia)
- ...on 4 February 1600, Tycho de Brahe and Johannes Keplerus, cofounders of a new universe, met face to face, silver nose to sca heek. Tycho was fifty-hiree, Kepler, twenty-nine. Tycho wa Koestler, The Sleepwalkers, p302

Kepler's first law:

Each planet moves around orbit in an ellipse, with the sun at one focus.

- Ellipse is a conic section
- Along with circle, hyperbola

- This is an unexpected result...
- Why an ellipse?
- Why is sun at focus rather than at center??

Keplerl simulation

Kepler's 3 Laws ${ }_{[P g . ~}^{64]}$

- Each planet moves around orbit in ellipse, with sun at one focus.
- The straight line joining the planet and the sun sweeps out equal areas of space in equal amounts of time.
- $\mathrm{P}^{2}=\mathrm{a}^{3}$
- $\mathrm{P}=$ period of orbit, in years
- $\mathrm{a}=$ semi-major axis of orbit, in au.

Semi-major axis

Kepler's second law:

The line joining the planet and the sun sweeps out equal areas of space in equal amounts of time.

- planet moves more slowly when it is far from sun
- more rapidly when close to sun
- see the Kepler2 simulation

