

"Natural" motion for Newton \& Aristotle

- Natural motion is motion that needs no explanation: the object naturally moves that way.
- Aristotle: For heavenly objects, natural motion is motion in a circle with the same speed. For base objects, natural motion is rest.

A book falls off the table and comes to rest on the floor. This needs no
explanation because rest is the natural state.

- Newton: Natural motion is moving at the same speed in the same direction
- Newton's First Law: In the absence of a force, an object moves at the Neme speed in the same direction
- Q1: A book falls off the table and lands on the floor. For Newton, what is natural?
a. The book is on the floor.
b. The book is halfway to the floor.
c. The book is just starting to fall
- Q2: Same after discussion with partner

[4]
 Isaac Newton
 (1643-1727)
 - One of the great geniuses of the millennium

- Invented calculus (mathematics of change)
- Invented mechanics (the description of how things move). Principia, 1687.
- Discovered Law of Gravity
- Kepler's laws can be derived from Newton's laws
- But Newton's laws are a general descriptions of a far wider range of phenomena
- universally valid
- except on the smallest or largest scales, or in extreme situations (strong gravity, high velocities).
- Q3: Venus moves around the sun in a circle at the same speed. Does Newton consider this motion natural?
a. Yes, Venus is a heavenly object.
b. Yes, the speed is the same.
c. No, the direction is not always the same.
d. No, Venus is not at rest.

Newton's Second Law

- Newton's First Law: In the absence of a force, an object moves at the
- Newton's Second Law tells how to
- Newton's Second Law tells how to
- Force $=$ mass xacceleration
$F=m x a$
Acceleration is change in velocity
divided by amount of time
- Q4 The velocity changed in
a. Case A only
b. Case B only
. Neither cases A nor B
d. Both cases A and B
- Q5 The acceleration is greatest for
a. A
$\begin{array}{ll}\text { a. A } \\ \text { b. } & \text { B }\end{array}$
b. B
c. C
d. D

Newton discovers the law of gravity

- Newton was sitting under an apple tree and looking at the moon. An apple falls on his head. Newton realizes the moon and the apple fall for the same reason. He does a quick
calculation and concludes that the force of gravity decreases as the square of the distance.
- In a second, an apple falls 5 m .
- The moon stays up in the sky What does Newton mean by "the moon falls?"
- The moon is 60 times farther from the center of the eart from the center

Newton's Law of Gravity

- Force between sun and earth
- Force $=\mathrm{G}$ mass ${ }_{\text {Sun }}$ mass $_{\text {Earth }} /$ Distance 2
- How to calculate the path of the planets using a computer
- Start with present location, speed, \& direction of a planet
- Find the force due to sun and other planets (using law of gravity) Use $\mathrm{F}=$ mass \times acceleration to find new speed \& direction
- Use speed \& direction to find new location Orbits with mass of planets 45 times heavier

