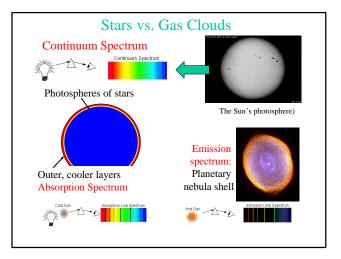
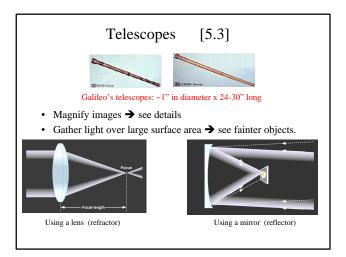
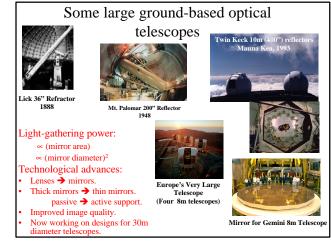
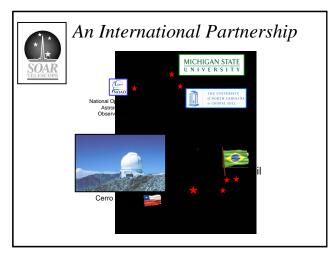
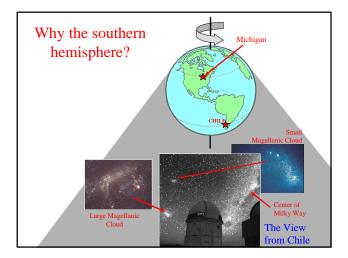

Telescopes–January 31

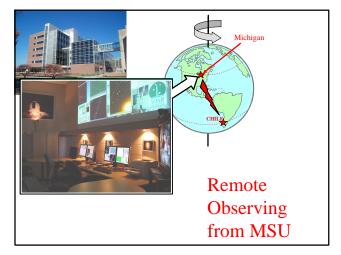

.

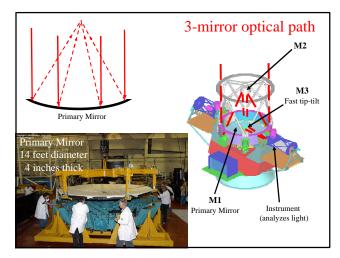

Atoms emit and absorb light (left over from Fri) Telescopes

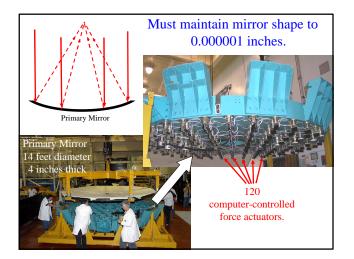

- · First test is next Wed
 - Covers atoms & light.
 - · Does not cover telescopes.
 - · Practice test on angel.
 - "Missouri Club" (Show me)
 Mon, 31 Jan, 7:00-
 - 8:00pm, 1415 BPS (next door)

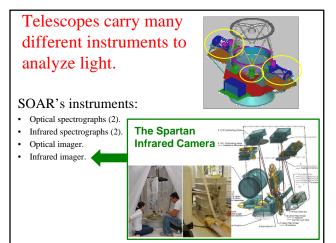












Spartan Infrared Camera

High Resolution Imaging for the SOAR Telescope www.pa.msu.edu/~loh/SpartanIRCamera

- The Spartan Infrared Camera is a \$2.0M instrument funded by MSU, Brazil, SOAR, and the National Science Foundation. ٠
- Primary technical goal: Imaging with high angular resolution in the near infrared (1000-2500 nm) where
 - Tip-tilt correction of atmospheric turbulence produces sharpest images.
- Primary science goal for infrared:

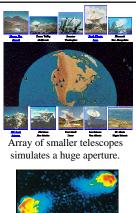
- Observe distant galaxies & supernovae
 Center of Milky Way galaxy
 Designed and built by the MSU
 Physics-Astronomy Dept.

٠

Tip-tilt Correction of Atmospheric Turbulence

- Tip-tilt correction
 - Method:
 - · Sense the position of a bright star • Move a mirror 60 times per second to keep
 - bright star centered
 - Why use tip-tilt correction?
 - Simulated image of a double star. • Where is the double star?
 - Where is the fainter companion star?
 - In image with 10 & 1000 the exposure time
 - · Do you see the companion?
 - · Is the companion visible with natural seeing?
 - With tip-tilt correction
 - Detail become visible
 - · Fainter stars become visible

Radio telescopes


wavelength Angular resolution = mirror diameter

• Radio wavelengths are large \rightarrow need large mirror diameter to see smallangle details.

Arecibo, Puerto Rico.... • 1000 ft. diameter, but same angular resolution as 0.01 ft optical telescope.

•

Radio galaxy Cygnus A

Very Large Array Radio Telescope in New Mexico

Key parameters of telescopes

- Fainter objects are visible with a larger telescope because
 - R1: a larger telescope collects more light. R2: with the sharper images of a larger telescope, the light is more concentrated.
 - The primary motivation for the VLA is
- R1
- a. b.

1.

- a. K1 b. R2 c. Both R1 & R2 equally The primary motivation for 4-m SOAR vs 0.6-m MSU is 2.
 - a. R1 b. R2
 - Both R1 & R2 equally c.

