Age \& Comets-February 25

- Test 2
- Mon, Feb 28
- Covers
- 6 questions from Test 1. Added to score of Test 1
- Telescopes
- Solar system
- Format similar to Test 1
- Homework 3 closes 3am Mon

Meteor showers

- Result of Earth passing through trail of debris from an old comet.
- Some trails spread out over whole orbit.
- Others are clumped up.

Radiant

- The direction from which the meteors appear to come
- Determined by combination of motion of meteors and motion of Earth.

Meteors (often pieces of comets)

- Small particles burning up in Earth's atmosphere.
- Typical meteor $=1$ gram (size of a pea)
- Bright fireballs = golf-ball sized particle.
- Bowling balls would make it to Earth's surface.

Meteorites (always pieces of asteroids)

- The particles that make it to the Earth's surface.
- Allende meteorite (Mexico): 2 tons of fragments recovered after airburst.

- Primitive meteorites (not melted)
compontopost foemen Stony (left) Formed in inner asteroid belt
- Carbon-rich (right). Formed in outer asteroid belt

- Processed meteorites (melted)
- solron.(left) Large iron crystals $\Rightarrow>$ cooled very slowly $=>$ part of a large object
- Stony (right).

$\mathrm{K}-40 \rightarrow \mathrm{Ar}-40+\mathrm{e}^{+}$(1.25 Billion years)

- Q A meteorite is found
- Q The nuclear chemist is concerned about heating during its passage through the earth's atmosphere The surface of the meteorite would appear be than the center if heating is significant
a. Younger
b. older

Isotopes in primitive meteorites \rightarrow date of formation of solar system.

- Primitive meteorites have very narrow range of ages
- 4.48-4.56 billion yrs. Average $=\underline{\mathbf{4 . 5 4} \text { billion yrs. }}$
- Primitive meteorites contain Xenon-129
- Iodine-129 is made in supernovae (exploding stars)
- Iodine-129? Xenon-129 (17 Million years)
- Xenon-129 is a gas even at low temperatures
\Rightarrow Meteorite form a few tens of millions of years after a supernova
\Rightarrow A supernova triggered collapse of cloud that became solar system

Comets [9.2]

- Small icy nucleus.
- "Dirty snowball" model
- mostly water ice
- + other ices
- mixed with silicate grains and dust
- Outer layers of nucleus vaporize when comet approaches sun.
- Little geysers and eruptions observed.
- Comet's head (Coma) often as large as Jupiter
- up to $250,000 \mathrm{~km}$ diameter.
- Primarily $\mathrm{H}_{2} \mathrm{O}$ gas.
- + few percent $\mathrm{CO}, \mathrm{CO}_{2}$ and hydrocarbons.
- Huge hydrogen clouds around head can get bigger than sun.

- dust tail
- up to 10 million km long
- smoke-sized dust particles
- driven off nucleus by escaping gases
- pushed outwards by Sun's radiation
- competing force of Sun's gravity $\boldsymbol{\rightarrow}$ curve in tail.
- ion tail
- Up to 100 's of millions km long
- small charged particles, pushed out by charged particles from Sun (solar wind).

45 minute

Halley's Comet

- first observed 239 BC
- 76 year average period
- most recent visit 1986
- fizzled out last time around

Oort Cloud \& Kuiper Belt

- No comets have orbits coming from interstellar space.
- Strong tendency for aphelia at $\sim 50,000 \mathrm{AU}$
- No preferential direction from which comets come
- Best current model: The Oort Comet Cloud
- $10^{11}-10^{12}$ comets in loosely bound solar orbits at 50,000AU
- Ejected by Jupiter into random directions
- Gravitational perturbations occasionally deflect one in.
- Guesstimate: 1 trillion (10^{12}) comets total
$\times 10^{-10}$ earth-masses/comet $=10^{2}$ earth masses total.

