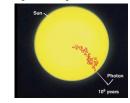


Grade at midterm

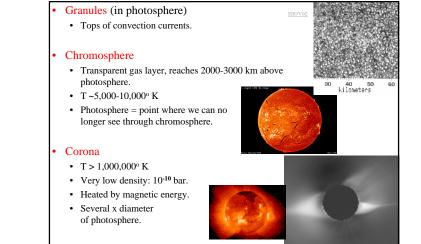
- Average is 2.9.
- Weighting
- Clicker 19%
- Homework 6% (1hwk= 2 classes)
- Test 37.5% each
- 38% is done; 62% (Test 3, Final, remaining clicker & homework) remains
- Your true grade at midterm may be slightly higher.
 - Last problem on test 2 not graded
 - Excused absences, some homework corrections, some paper clicker questions not entered

	Your score	Class median / Total	Calculation for median student
Test 1	28	27 /39	27/39*37.5 = 26
Test 2	23	20 /31	20/31*37.5 = 24.2
Clicker	88	87 /105	87/105*19 = 15.7
Homework 1	100	75 /100	75/100*2 = 1.5
Homework 2	100	100 /100	100/100*2 = 2
Homework 3	92	100 /100	100/100*2 = 2
Total	77		71.4
77/100 => 3.5			

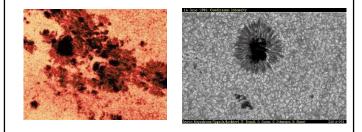


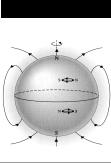
1

Photosphere


• Deepest layer from which light directly escapes into space.




- Low density and pressure (10⁻⁴, 0.1 x Earth's surface values)
- But hot (5800° K)



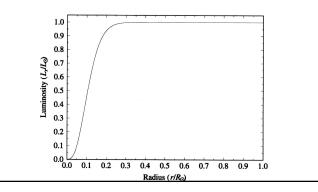
Sunspots Cooler areas as much as 1500° less than photosphere. This makes them look darker. But they actually are still very bright. Glowing at 4300° K instead of 5800°

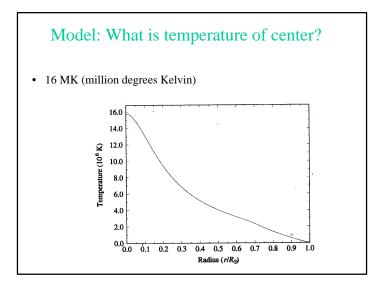
Sunspots

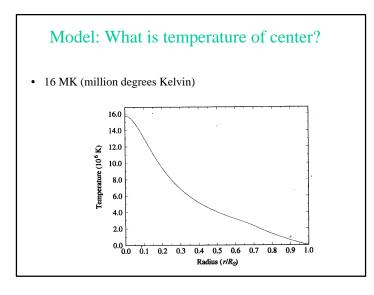
- occur where magnetic field lines leave, re-enter photosphere.
 - Spots come in pairs.
 - leading = 1 magnetic polarity
 - trailing = opposite polarity
 - polarity reverses between N, S hemispheres.
- Magnetic field prevents hotter gas (granules) from entering these regions

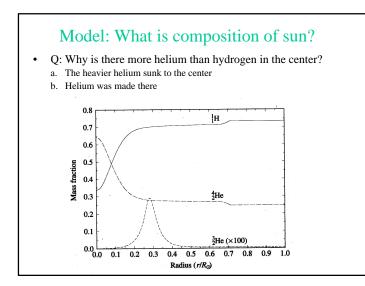
Interior of the sun

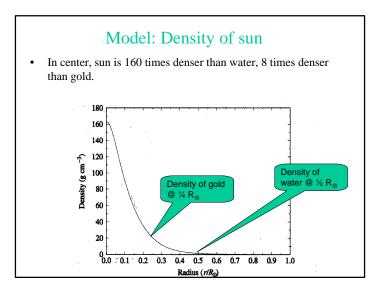
- Use physics to construct models
- Energy is generated by nuclear fusion, which depends on temperature and composition.
- Energy move from center, where fusion occurs, to outside, where it radiates into space.
- Gas pressure holds the mass of the parts above.




[Fig. 10.3]


Solar oscillations with GONG 2D mapping of velocity of gas on • Sun's surface · Seismic wave patterns. Caused by sudden collapses of large volumes of gas on surface. · Wave pattern shows interior structure · similar to analysis of Earth's, Moon's interior structures. Results Convection zone down to 30% of Sun's radius. • Differential rotation throughout convection zone. · Helium abundance same as at surface, except in energy generation zone.


Model: Where is energy produced?


• Where is energy produced? Within central 10% (of radius)

