

Pressure in a normal gas What is pressure? Think of gas particles in a balloon as baseballs in the balloon. Baseballs move and hit walls of balloon Baseballs push on the balloon Normal gas

- Pressure is greater at hotter temperature
 - Baseballs move faster at hotter temperature
 - Baseballs hit walls faster & more often
 - Pressure is higher

Pressure in a degenerate gas

- What is pressure?
 - Think of gas particles in a balloon as baseballs in the balloon.
 - · Baseballs move and hit walls of balloon
 - Baseballs push on the balloon
- Degenerate gas
 - Pressure is not greater at hotter temperature
 - · Baseballs move because they are close together
 - Quantum mechanics: uncertainty relation
 - Speed × confinement = Planck's constant
 - · Pressure is greater if gas is confined to smaller region
 - In a smaller star, baseballs move faster
 - Baseballs hit walls faster & more often
 - Pressure is higher

White dwarf

• Degenerate gas

- · Pressure is not greater at hotter temperature
- · Baseballs move because they are close together
- Quantum mechanics: uncertainty relation
- Speed × confinement = Planck's constant
- · Pressure is greater if gas is confined to smaller region
 - In a smaller star, baseballs move faster
 - Baseballs hit walls faster & more often
 - · Pressure is higher
- · A teaspoon of white dwarf weighs several tons
- To get the largest amount of WD matter, choose the smallest one.

- Q Why does the sun end up as a carbon white dwarf?
 - a. There is not enough mass to burn neon.
 - b. The sun becomes degenerate
 - c. The sun loses too much mass as a planetary nebula
 - d. It takes too long to burn neon.