## When the Universe was 3 Minutes Old-13 Apr

- What did the Cosmic Background Radiation, now a cool 2.7 K , do in the past?
- The universe when it was 3 minutes old
- Why is there so much helium in the sun?
- Helium formed when
universe was 3 minutes old




## The Younger Universe

- Fill a 2-L bottle with an average of the present universe
- Matter
- Mass $=2 \times 10^{-29} \mathrm{~kg}$
- same as $1 / 100$ hydrogen
- Light has has energy
- $E=m c^{2} . E=e V / 4,000$
$-E \propto T \propto 1 / \lambda$ (Wien)
- Light
- 0.8 M photons
- Mass of each photon=
$4 \times 10^{-40} \mathrm{~kg}$
- Mass of light $=3 \times 10^{-34} \mathrm{~kg}$ Same as $1 / 5,000,000$ hydrogen atom
- When universe was half the present size,
- $2 \times 2 \times 2$ present-day bottles

2. How many photons were in a 2 L bottle back then?
a. 0.8 Million
b. 1.6 Million
c. 3 Million
d. 6 Million
e. 12 Million


## The Younger Universe

- Fill a 2-L bottle with an average of the present universe
- Matter
- Mass= $2 \times 10^{-29} \mathrm{~kg}$
same as $1 / 100$ hydrogen
- Light has mass b/c light has energy
- $E=m c^{2}$. $E=e V / 4,000$
$-E \propto T \propto 1 / \lambda$ (Wien)
- Light
- 0.8 M photons
- Mass of each photon= $4 \times 10^{-40} \mathrm{~kg}$
- Mass of light $=3 \times 10^{-34} \mathrm{~kg}$ Same as $1 / 5,000,000$ hydrogen atom
- When universe was half the present size
- $2 \times 2 \times 2$ present-day bottles in a single bottl

1. How much mass was in a 2 L bottle back then? Mass is same as
a. $1 / 100^{\text {th }}$ hydrogen atom
b. $1 / 50^{\text {th }}$ hydrogen atom c. $1 / 25^{\text {th }}$ hydrogen atom d. $1 / 12^{\text {th }}$ hydrogen ato e. $1 / 6^{\text {th }}$ hydrogen ato ,

$\qquad$

Then

## The Younger Universe

- Fill a 2-L bottle with an average of the present universe
- Matter
- Mass= $2 \times 10^{-29} \mathrm{~kg}$
same as $1 / 100$ hydrogen
atom
- Light has mass b/c light has energy
- $\mathrm{E}=\mathrm{m} \mathrm{c}^{2}$. $\mathrm{E}=\mathrm{eV} / 4,000$
$-E \propto T \propto 1 / \lambda$ (Wien)
- Light
- 0.8 M photons
- Mass of each photon=
$4 \times 10^{-40} \mathrm{~kg}$
- Mass of light $=3 \times 10^{-34} \mathrm{~kg}$ Same as $1 / 5,000,000$ hydrogen atom
- When universe was half the present size,
- $2 \times 2 \times 2$ present-day bottles fit in a single bottle

3. The mass of the light in a 2 L bottle back then was
a. $1 / 5,000,000^{\text {th }} \mathrm{m}_{\mathrm{H}}$
b. $1 / 2,500,000^{\text {th }} \mathrm{m}_{\mathrm{H}}$
c. $1 / 1,300,000^{\text {th }} \mathrm{m}_{\mathrm{H}}$
d. $1 / 600,000^{\text {th }} \mathrm{m}_{\mathrm{H}}{ }^{\text {a }}$
e. $1 / 300,000^{\frac{t h}{h}} \mathrm{~m}^{-1} 3$


Then

## The Younger Universe

- Fill a 2-L bottle with an average of the present universe
- Matter
- Mass= $2 \times 10^{-29} \mathrm{~kg}$ - same as $1 / 100$ hydrogen
- Light has has energy
- $E=m c^{2}$. $E=e V / 4,000$
- $E \propto T \propto 1 / \lambda$ (Wien)
- Light
- 0.8 M photons
- Mass of each photon= $4 \times 10^{-40} \mathrm{~kg}$
- Mass of light $=3 \times 10^{-34} \mathrm{~kg}$ Same as $1 / 5,000,0$
hydrogen atom hydrogen atom
- When universe was half the present size
$2 \times 2 \times 2$ present-day bottles fit in a single bottle
- The mass of matter is bigger by factor of $2^{3}=8$
- The mass of the light is bigger by a factor of $2^{4}=16$



## The Younger Universe

Fill a 2-L bottle with an average of the present universe

- Matter
- Mass $=2 \times 10^{-29} \mathrm{~kg}$
- same as $1 / 100$ hydrogen atom
- Light has mass b/c light has energy
- $\mathrm{E}=\mathrm{m} \mathrm{c}^{2} . \mathrm{E}=\mathrm{eV} / 4,000$
- Ligh
_ 0.8 M photons
- Mass of each photon $=4 \times 10$
${ }^{40} \mathrm{~kg}$
- Mass of light $=3 \times 10^{-34} \mathrm{~kg}$ Same as $1 / 5,000,000$ hydrogen atom

When universe was hot enough to roast a chicken - Distances were 200 times smaller
$200 \times 200 \times 200$ present-day bottles fit in a single bottle
The mass of matter is bigger The mass of the
The mass of the light is bigger by a factor of $200^{4}$
4. Would you notice the difference between an empty and filled bottle of matter? Of light?
a. YY
b. YN
c. $N Y$
d. NN

## The Younger Universe

- Fill a 2-L bottle with an average of the present universe
- Matter
- Mass= $2 \times 10^{-29} \mathrm{~kg}$
- same as $1 / 100$ hydrogen

Light has has energy
$-E=m c^{2}$. $E=e V / 4,000$
$-E \propto T \propto 1 / \lambda$ (Wien)

- Light
- 0.8 M photons
$4 \times 10^{-40} \mathrm{~kg}$
- Mass of light $=3 \times 10^{-34} \mathrm{~kg}$

Same as $1 / 5,000,000$
hydrogen atom

- When universe was 3minutes old
Distances were 400M times smaller
- Mass of matter in bottle 1 mg
- Mass of light in bottle 9 kg

5. Would you notice the difference between an empty and filled bottle of matter? Of light?
a. YY
b. YN
c. NY
d. NN

## Reactions important for cosmology

- Rough numbers
- Chemical reactions: 1 eV
- Nuclear reactions: 1 MeV
- Hydrogen ionizes
$-\mathrm{H}+$ energy $\rightarrow \mathrm{p}+e$
- $\mathrm{E}=0.23 \mathrm{eV}$ in space
- Deuterium forms
$-\mathrm{p}+\mathrm{n} \rightarrow$ deuterium + energy
- $\mathrm{E}=0.1 \mathrm{MeV}$
- Proton changes into neutron
- $\mathrm{E}=2 \mathrm{MeV}$
- Now
- 2.7K
- $\mathrm{E}=\mathrm{eV} / 4000$
- Roast chicken epoch
- 500 K
- $\mathrm{E}=\mathrm{eV} / 20$
- 3 min
- 1 BK
- $\mathrm{E}=0.1 \mathrm{MeV}$
- 0.001s
- 400 BK
- $\mathrm{E}=40 \mathrm{MeV}$

