Weighing the Universe-18 Apr

- Fill out SIRS; then get 3 bonus licker points an ange.
- 18-29 April
- Dear Students:

As Director of Integrative Studies- Science your opinions of ISP and ISB are very important to me. Comments from previou
students have made a difference and yours sudens have made. Therefore, I hope youll take a few
max alse minutes and got
in the SIRS questionnaire. I I I ook at at the
results for every class, and I I read every comment.
If you would rather write me directly, please the anturlull writ back. Thank you and good luck on your finals. Dr. Duncan Sibley, Director Center for Integrative Studies in General
Science

- Weighing the earth with a cannonball
- What is the fate of the cannonball? W
back to earth?
- What is the mass of the earth? Is there mass that we cannot see?
- Weighing the universe
- What is the fate of the universe? Will it expand forever or fall back on itself?
- What is the universe made of? Is there mass that we cannot see?
- Key parameter: PE/KE

A Cannon Ball

- Cannonball is shot out of cannon at speed v. Cannonball has mass=1kg.
- Kinetic energy is $1 / 2 \mathrm{v}^{2}$.
- Gravity pulls on cannonball to slow the motion.
- Potential energy of gravity is
- G M/R
- M is entire mass enclosed by sphere of radius R!
- Mass outside of R does not count if spherically symmetric.
- Distance is R between cannonball and center of sphere!

A Cannon Ball

- Kinetic energy is $\mathrm{KE}=1 / 2 \mathrm{v}^{2}$.
- Potential energy of gravity is
- $\mathrm{PE}=\mathrm{G} M / \mathrm{R}$
- Cannonball will escape if
- $\mathrm{KE} \geq \mathrm{PE}$
- Shot faster than what gravity can hold
- Define "Density parameter"
- $\Omega=\mathrm{PE} / \mathrm{KE}=2 \mathrm{GM} /\left(\mathrm{R} \mathrm{v}^{2}\right)$

1. A cannonball is shot with $\Omega=0.7$. Will the cannonball escape? Same question for $\Omega=1.1$.

A Galaxy

- Hoag's object is moving b/c big - Hoag s object is moving b/c big
bang. Use Hubble's Law $v=H R$
- Kinetic energy is $1 / 2 v^{2}=1 / 2 H^{2} R^{2}$.
- Potential energy of gravity is
- GM/R
- Define "Density parameter" $\Omega=\mathrm{PE} / \mathrm{KE}=2 \mathrm{GM} /\left(\mathrm{Rv}^{2}\right)$ $\Omega=\mathrm{PE} / \mathrm{KE}=2 \mathrm{GM} /\left(\mathrm{R}^{3} \mathrm{H}^{2}\right)$
- Mass/volume is mass density ρ $\Omega=\mathrm{PE} / \mathrm{KE}=8 \pi \mathrm{G} \rho / \mathrm{H}^{2}$
- Does not depend on particular galaxy
- Denine "Density par

A Galaxy

- Density parameter

$$
\Omega=\mathrm{PE} / \mathrm{KE}=8 \pi \mathrm{G} \rho / \mathrm{H}^{2}
$$

3. $\Omega=0.7$. Will the universe expand forever? Same question for $\Omega=1$.
a. YY
b. YN
c. NY
d. NN
