

Physics for Scientists & Engineers 2

Spring Semester 2005 Lecture 1

January 11, 2005

Physics for Scientists&Engineers 2

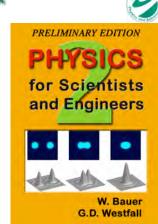
Meet Your Professor

- (Gary Westfall/Ed Brown) (Wolfgang Bauer/Kris Starosta)
- All: Nuclear Physics/Astrophysics
- (Experimentalist/Theorist) (Theorist/Experimentalist)
- At MSU since (1981/2004)(1988/2003)
- Office:
 - (W204 NSCL/3250 BPS) (4208 BPS/W107 NSCL)
 - Phone: (333-6324/355-9200 ext. 2420) (353-8662/324-8138)
- Email:
 - (westfall@nscl.msu.edu/browned@msu.edu)
 (bauer@pa.msu.edu/Starosta@nscl.msu.edu)

January 11, 2005

Physics for Scientists&Engineers 2

Meet Your Professor (2)


- Kris Starosta
- Nuclear Physics
- Experiment
- At MSU since 2003
- Office
 - W107 Cyclotron
 - 324-8138
 - starosta@nscl.msu.edu

January 11, 2005

Physics for Scientists&Engineers 2

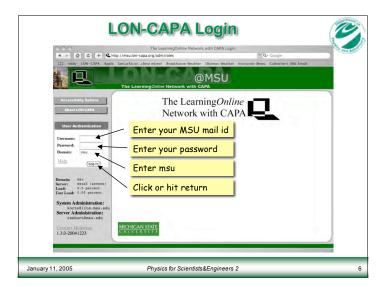
Textbook

- Bauer and Westfall
- "Physics for Scientists and Engineers 2", McGraw-Hill (2005).
 - Available at
 - Spartan Bookstore MSU-International Center 517-355-3450
 - The College Store 4790 S. Hagadorn, Suite 138 517-333-0505
 - Ned's Bookstore 135 East Grand River Avenue 517-332-4200

January 11, 2005

Physics for Scientists&Engineers 2

PHY 184 on the Web

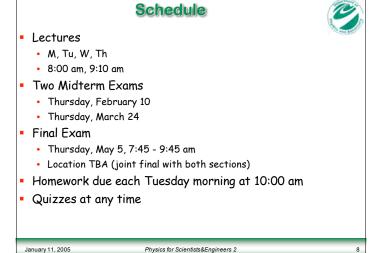


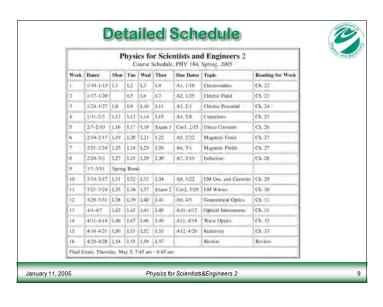
Web site:

January 11, 2005

- http://www.pa.msu.edu/courses/PHY184/
 - · Will contain links to lecture notes
- Homework web site
 - http://msu.lon-capa.org
- Strosacker Learning Center in Room 1248 BPS (this building) will be our help room (Th, F, M) for LON-CAPA homework

January 11, 2005 Physics for Scientists&Engineers 2


Grades



We grade on a fixed scale - no curve

		What Gr	What Grade	
What Counts	%	92 <x<100< td=""><td>4.0</td></x<100<>	4.0	
Midterm 1	15%	84<×<92	3.5	
Midterm 2	15%	76 <x<84< td=""><td>3.0</td></x<84<>	3.0	
Final Exam	30%	68<×<76	2.5	
Homework	30%	60 <x<68< td=""><td>2.0</td></x<68<>	2.0	
Quizzes	10%	52 <x<60< td=""><td>1.5</td></x<60<>	1.5	
Total	100%	44<×<52	1.0	
		0<×<44	0.0	

Physics for Scientists&Engineers 2

Electricity and Magnetism

thousands of years

- Electricity and magnetism have been known for
- The ancient Greeks knew that a piece of amber rubbed with fur would attract small, light objects
 - The word for electron and electricity derived from the Greek word for amber, ηλεκτρινός
- Naturally occurring magnetic materials called lodestones were used as early as 300 BC to construct compasses
- However, the relationship between electricity and magnetism was not known until the middle of the 19th century

January 11, 2005 Physics for Scientists&Engineers 2

Schedule for this Week

- Please read chapter 22 (first chapter) of the book by Wednesday
- Today we will introduce the basic concepts that will be covered this semester
- The rest of the week we will cover electrostatics (chapter 22) and begin the electric field (chapter 23) on Thursday

January 11, 2005 Physics for Scientists&Engineers 2

Fundamental Forces of Nature

Forces of Nature

- The force of gravity has been known since the time of Newton
 - Late 17th century
- In the 20th century, two more forces were discovered
- The weak force and the strong force
- Around 1970 the electromagnetic force and the weak force were unified
 - · The electroweak force
 - 1979 Nobel prize in physics for Weinberg, Salam, and Glashow
- Currently physicists are working to unify the electroweak force and the strong force
- Gravity remains a puzzle although it was identified first

January 11, 2005

Physics for Scientists&Engineers 2

Four Fundamental Forces

- We think that the four fundamental forces work by exchanging elementary particles
 - Gravity graviton (has not been observed, only a theory)
 - Electromagnetic photon
 - Weak W and Z bosons (recently observed in 1983)
- Strong gluons
- Thus forces can act a distance without touching
 - The Sun can attract the Earth from 93 million miles away
 - · Magnet can attract metal

January 11, 2005 Physics for Scientists&Engineers 2

Gravitational and Electric Forces

• For gravity we defined a gravitational force

$$F(r) = G \frac{m_1 m_2}{r^2}$$

and a gravitational potential

$$U(r) = -G \frac{m_1 m_2}{r}$$

- We will do the same for the electric force and the electric potential
- We will introduce the concept of an electric field to help us understand the electromagnetic force

January 11, 2005

Physics for Scientists&Engineers 2

15

Elementary Particles

Exchange particles

Force	Particle
Gravity	graviton
Electromagnetic	photon
Weak	W, Z
Strong	gluon

Leptons

electron	electron neutrino	
muon	muon neutrimo	
tau	tau neutrino	

Quarks

up	strange	bottom	
down	charm	top	

January 11, 2005 Physics for Scientists&Engineers 2