

Electrostatic Charging

- There are two ways to charge an object
- Conduction
- Induction
- Charging by conduction
- We can charge an object by connecting a source of charge directly to the object and then disconnecting the source of charge
- The object will remain charged
- Conservation of charge

Review from Yesterday

- There are positive charges and negative charges
- Law of Charges
- Like charges repel and opposite charges attract
- The unit of charge is the coulomb defined as - $1 \mathrm{C}=1 \mathrm{~A} \cdot \mathrm{~s}$
- Law of charge conservation
- The total charge of an isolated system is strictly conserved

January 11, $2005 \quad$ Physics for Scientists\&Engineers 2

Charging by Induction

- We can also charge an object without physically connecting to it
- First we charge a paddle with negative charge
- Then we ground the object to be charged
- Connecting the object to the Earth provides an effectively infinite sink for charge
- We bring the charged paddle close to the object but do not touch it
- We remove the ground connection and move the paddle away
- The object will be charged by induction

Physisis for ScientistsseEngineers 2

Electric Foree = Coulomb's Law

- Consider two electric charges: q_{1} and q_{2}
- The electric force F between these two charges separated by a distance r is given by Coulomb's Law

$$
F=k \frac{q_{1} q_{2}}{r^{2}}
$$

- The constant k is called Coulomb's constant and is given by

$$
k=8.99 \cdot 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}
$$

January 11,2005

Physics for Scientists\&Engineers 2

Coulomb's Law (2)

- We can get a feeling for how big a coulomb of charge is if we calculate the force between two $1 C$ charges 1 meter apart

$$
F=\left(8.99 \cdot 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right) \frac{1 \mathrm{C} \cdot 1 \mathrm{C}}{(1 \mathrm{~m})^{2}}=8.99 \cdot 10^{9} \mathrm{~N}
$$

which is the weight of 450 Space Shuttles at launch

- The coulomb constant is also written as

$$
k=\frac{1}{4 \pi \varepsilon_{0}} \quad \varepsilon_{0}=8.85 \cdot 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}
$$

- ε_{0} is the electric permittivity of free space
- Fundamental constant

January 11, $2005 \quad$ Physics for Scientists\&Engineers 2

Example = The Helium Nucleus

- The nucleus of a helium atom has two protons and two neutrons. These four nucleons are bound together by the strong force. What is the magnitude of the electric force between the two protons in the helium nucleus?

Each proton has charge $q=1.602 \cdot 10^{-19} \mathrm{C}$
The distance between the two protons is approximately $2.0 \cdot 10^{-15} \mathrm{~m}$
The force is given by
$F=k \frac{q_{1} q_{2}}{r^{2}}=\left(8.99 \cdot 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right) \frac{\left(1.602 \cdot 10^{-19} \mathrm{C}\right)^{2}}{\left(2.0 \cdot 10^{-15} \mathrm{~m}\right)^{2}}=58 \mathrm{~N}$
Considering that the mass of a proton is $1.67 \cdot 10^{-27} \mathrm{~kg}$
this force is huge

Example = Equilibrium Position

- Consider two charges located on the x axis

- The charges are described by
- $q_{1}=0.15 \mu \mathrm{C} \quad x_{1}=0.0 \mathrm{~m}$
- $q_{2}=0.35 \mu \mathrm{C} \quad x_{2}=0.40 \mathrm{~m}$

Where do we need to put a third charge for that charge to be at an equilibrium point?

- At the equilibrium point, the force from each of the two charges will cancel

January 11, $2005 \quad$ Physics for ScientistssEngineers 2 9

Example = Equilibrium Position (3)

- $x_{3}<x_{1}$
- Here the forces from q_{1} and q_{2} will always point in the same direction (to the left for a positive test charge)
- No equilibrium
- $x_{2}<x_{3}$
- Here the forces from q_{1} and q_{2} will always point in the same direction (to the right for a positive test charge) - No equilibrium

Example = Equilibrium Position (2)

- We can see that the equilibrium point must be along the x-axis
- Let's consider three regions along the x-axis where we night place our third charge
- $x_{3} \times x_{1}$
- $x_{1}<x / 3<x_{2}$
- $x_{2}<x_{3}$

January 11, 2005
Physics for Scientists\&Engineers 2

Example $=$ Equilibrium Position (4)

- $x_{1}<x_{3}<x_{2}$
- Here the forces from q_{1} and q_{2} can balance

$$
k \frac{q_{1} q_{3}}{\left(x_{3}-x_{1}\right)^{2}}=k \frac{q_{3} q_{2}}{\left(x_{2}-x_{3}\right)^{2}} q_{3} \text { cancels }
$$

$$
\frac{q_{1}}{\left(x_{3}-x_{1}\right)^{2}}=\frac{q_{2}}{\left(x_{2}-x_{3}\right)^{2}} \Rightarrow
$$

$$
\begin{aligned}
q_{1}\left(x_{2}-x_{3}\right)^{2} & =q_{2}\left(x_{3}-x_{1}\right)^{2} \Rightarrow \\
\sqrt{q_{1}}\left(x_{2}-x_{3}\right) & =\sqrt{q_{2}}\left(x_{3}-x_{1}\right) \Rightarrow
\end{aligned} \quad x_{3}=\frac{\sqrt{q_{1}} x_{2}+\sqrt{q_{2}} x_{1}}{\sqrt{q_{1}}+\sqrt{q_{2}}}=\frac{\sqrt{0.15 \mu \mathrm{C}} \cdot(0.4 \mathrm{~m})}{\sqrt{0.15 \mu \mathrm{C}}+\sqrt{0.35 \mu \mathrm{C}}}=0.16 \mathrm{~m}
$$

$$
x_{3}=\frac{\sqrt{q_{1}} x_{2}+\sqrt{q_{2}} x_{1}}{\sqrt{q_{1}}+\sqrt{q_{2}}}
$$

January 11, $2005 \quad$ Physics for Scientists\&Engineers 2

Example = Charged Balls,

Consider two identical charged balls hanging from the ceiling by strings of equal length 1.5 m . Each ball has a charge of $25 \mu \mathrm{C}$. The balls hang at an angle $\theta=25^{\circ}$ with respect to the vertical.
What is the mass of each ball?
The distance between the balls is
$d=2 \ell \sin \theta=2(1.5 \mathrm{~m}) \sin 25^{\circ}=1.27 \mathrm{~m}$

The coulomb force between the balls is
$F_{c}=k \frac{q_{1} q_{2}}{r^{2}}=k \frac{q^{2}}{d^{2}}$
The gravitation force on each ball points down
$F_{g}=m g$

January 11,2005
Physics for Scientists\&Engineers 2

Electric Force and Gravitationall Force

- Coulomb's Law that describes the electric force and Newton's gravitational law have a similar functional form

$$
F_{\text {elecricic }}=k \frac{q_{1} q_{2}}{r^{2}} \quad F_{\text {gacuity }}=G \frac{m_{1} m_{2}}{r^{2}}
$$

- Both forces vary as the inverse square of the distance between the objects
- Gravitation is always attractive
- k and G give the strength of the forces
Example = Charged Balls (2)
Looking at the left ball
x direction: $k \frac{q^{2}}{d^{2}}=T \sin \theta$
y directon: $m g=T \cos \theta$

Dividing these two equations we get
$\frac{k q^{2}}{m g d^{2}} \frac{T \sin \theta}{T \cos \theta}=\tan \theta \Rightarrow$
$m=\frac{k q^{2}}{\tan \theta g d^{2}}=\frac{\left(8.99 \cdot 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}\right)\left(2.5 \cdot 10^{-5} \mathrm{C}\right)^{2}}{\tan 25^{\circ}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(1.27 \mathrm{~m})^{2}}=0.76 \mathrm{~kg}$
$\mathrm{~A} \operatorname{similar}$ analysis applies to the right ball
Physics for Scientists $8 E n g i n e e r s ~ 2 ~$

January 11,2005

Example = Charged Balls (2)

Looking at the left ball
x direction: $k \frac{q^{2}}{d^{2}}=T \sin \theta$

Dividing these two equations we get
$\frac{k q^{2}}{m g d^{2}}=\frac{T \sin \theta}{T \cos \theta}=\tan \theta \Rightarrow$

$\frac{k g d^{2}}{T \cos \theta}$

$$
\text { ___ -_Ineers } 2
$$

Example = Forces between Electrons

- What is relative strength of the force of gravity compared with the electric force for two electrons?
$F_{\text {cecercic }}=k \frac{q_{c}^{2}}{r^{2}}$
$F_{\text {geritit }}=G \frac{m_{e}^{2}}{r^{2}}$
$\frac{F_{\text {cearcic }}}{F_{\text {gerait }}}=\frac{k q_{e}^{2}}{G m_{e}^{2}}=\frac{\left(8.99 \cdot 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(1.602 \cdot 10^{-19} \mathrm{C}\right)^{2}}{\left(6.67 \cdot 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\left(9.109 \cdot 10^{31} \mathrm{~kg}\right)^{2}}=4.2 \cdot 10^{42}$
- So the electric force is always very much larger than the gravitational force
- Macroscopic objects are usually uncharged so only gravity plays a role
- Motion of the planets
- Gravity is irrelevant for sub-atomic processes

Example = Four Charges

Example = Four Charges (2)

$F=\sqrt{F_{x}^{2}+F_{y}^{2}}$
$F=\sqrt{\left(\frac{k q_{t}}{d^{2}}\left(q_{1}+\frac{q_{2}}{2} \cos 45^{\circ}\right)\right)^{2}+\left(\frac{k q_{t^{2}}}{d^{2}}\left(\frac{q_{2}}{2} \sin 45^{\circ}+q_{3}\right)\right)^{2}}$
$F=\frac{k q_{4}}{d^{2}} \sqrt{\left(q_{1}+\frac{q_{2}}{2} \cos 45^{\circ}\right)^{2}+\left(\frac{q_{2}}{2} \sin 45^{\circ}+q_{3}\right)^{2}}$
$\frac{q_{2}}{2} \sin 45^{\circ}=\frac{q_{2}}{2} \cos 45^{\circ}=\frac{2.50 \mu \mathrm{C}}{2 \cdot \sqrt{2}}=0.884 \mu \mathrm{C}$
$\alpha=1.50 \mu \mathrm{C}$
$\mathrm{a}=1.50 \mathrm{\mu C} \quad \mathrm{vi}+5 \mathrm{souc}$

$F=\frac{\left(8.99 \cdot 10^{9}\right)(4.50 \mu \mathrm{C})}{(1.25 \mathrm{~m})^{2}} \sqrt{(1.50 \mu \mathrm{C}+0.884 \mu \mathrm{C})^{2}+(0.884 \mu \mathrm{C}-3.50 \mu \mathrm{C})^{2}}$
$F=0.0916 \mathrm{~N}$

January 11, 2005
Physics for Scientists\&Engineers 2

