

The Electric Field (2)

- A field is an abstract concept that we can use to describe forces
- The electric field is defined at any point in space as the force of the electric field on a positive point charge
- If we place a positive point charge in an electric field, there will be a vector force on that charge in the direction of the electric field
 - The magnitude of the force is given by the strength of the electric field

- For the past three days we have been discussing the force between two charges that we not moving with respect to each other
- Suppose one charge were moving, how would the second charge know that the first charge had moved?
- What if there were other charges, how would one charge know about the extra charges?
- To deal with these situations, we introduce the concept of a field

Definition of Electric Field

 We define the electric field in terms of the force it exerts on a positive point charge

 $\vec{E} = \frac{\vec{F}}{q}$

- The unit of the electric field are N/C (newtons per coulomb)
- We can then write

 $\vec{F} = q\vec{E}$

- We see that the electric force is parallel to the electric field and is proportional to the charge
 - The force on a negative charge will be in the opposite direction

Superposition of Electric Fields

- Suppose we have many charges
- The electric field at any point in space will have contributions from all the charges
- The electric field at any point in space is the superposition of of the electric field from n charges is

 $\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \dots + \vec{E}_n$

 Note that the superposition applies to each component of the field

nuary 12, 2005	Physics for Scientists&Engineers 2

Properties of Field Lines

 The strength of the electric field is represented by the density of electric field lines

The direction of the electric field is tangent to the electric field lines

Electric Field Lines

- We can represent the electric field graphically by drawing lines that represent the vector force exerted on a positive test charge
- Electric field lines will originate on positive charges and terminate on negative charges
- Electric fields exist in three dimensions, but we often show a two-dimension representation
- Electric field lines do not cross
- The electric force at a given point in space is tangent to the electric field lines

January 12, 2005

Physics for Scientists&Engineers 2

Field Lines from a Point Charge

- The electric field lines from a point charge extend out radially
- For a positive point charge, the field lines point outward
 - Terminate at infinity
- For a negative charge, the field lines point inward
 - Originate at infinity

January 12, 2005

January 12, 2005

Electric Field Lines for Two Point Charges

- We can use the superposition principle to calculate the electric field from two point charges
- Let's start with one positive charge and one negative charge
- The field lines will originate from the positive charge and terminate on the negative charge

January 12, 2005

Physics for Scientists&Engineers 2

General Observations about Field Lines

- If the field lines connect, we have an attractive force
 - You can imagine the charges pulling on each other
- If the field lines seem to spread out, we have a repulsive force
 - You can imagine the charges pushing each other apart
- Field lines always originate on positive charge and terminate on negative charge
- Field lines never cross
- http://lectureonline.cl.msu.edu/~mmp/kap18/RR447app.htm .

Physics for Scientists&Engineers 2

11

Electric Field Lines from Identical Point Charges

- Now let's look at the electric field from two identical point charges
- For two positive charges, the field lines originate on the positive charges and terminate at infinity
- For two negative charges, the field lines terminate on the negative charges and originate at infinity

Example - Force from Field Lines

- What are the magnitudes (high, medium, low) and the direction of the electric force for the following four cases:
- +g at a)
- 2) +a at b)
- -g at c)
- 4) -g at d)

January 12, 2005

Physics for Scientists&Engineers 2