

Electric Field from a Point Charge

- Suppose we have two charges, q and q_{0}, separated by a distance r, the electric force between the two charges is

$$
F=\frac{1}{4 \pi \varepsilon_{0}} \frac{q q_{0}}{r^{2}}
$$

- We can consider q_{0} to be a test charge, and we can define the electric field from charge q as

$$
E=\frac{F}{q_{0}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}}
$$

- The electric field is a vector and to add electric fields we must add the components separately

January 19, 2005
Physics for Scientists \&Engineers 2

Review-Field Lines from a Point Charge
 - The electric field lines from a point charge extend out radially
 - For a positive point charge, the field lines point outward
 - Terminate at infinity
 - For a negative charge, the field lines point inward
 - Originate at infinity
 January 19, 2005
 Physics for Scientists\&Engineers 2

Electric Field from Three Point Charges

- Consider three charges

$$
\begin{aligned}
& q_{1}=1.50 \mu \mathrm{C} \\
& q_{2}=2.50 \mu \mathrm{C} \\
& q_{3}=-3.50 \mu \mathrm{C}
\end{aligned}
$$

- The three charges are placed at $q_{1}:(a, 0)$
$q_{2}:(0,0)$
$q_{3}:(0, b)$
- What is the electric field at point $P ?$

Physics for Scientists \&Engineers 2

Electric Field from Three Point Charges (2)

- The electric field at P due to q_{1} is

$$
\vec{E}_{1}=k \frac{q_{1}}{b^{2}} \vec{e}_{x}
$$

- The electric field at P due to q_{3} is $\vec{E}_{3}=k \frac{q_{3}}{a^{2}} e_{,}$
- The electric field at P due to q_{2} is $\vec{E}_{2}=\left(\frac{k q_{2} \cos \theta}{a^{2}+b^{2}}\right) \vec{e}_{x}+\left(\frac{k q_{2} \sin \theta}{a^{2}+b^{2}}\right) \vec{e}_{y}$
$a^{2}+b^{2}$ is the distance from q_{2} to point P squared θ is given by $\tan ^{-1}(a / b)$

January 19, 2005 Physics for Scientists\&Engineers 2

Electric Field from Three Point Charges (3)

- Now we add the components
$E_{x}=k \frac{q_{1}}{b^{2}}+\left(\frac{k q_{2} \cos \theta}{a^{2}+b^{2}}\right)=k\left(\frac{q_{1}}{b^{2}}+\frac{q_{2} \cos \theta}{a^{2}+b^{2}}\right)$
$E_{y}=\left(\frac{k q_{2} \sin \theta}{a^{2}+b^{2}}\right)+k \frac{q_{3}}{a^{2}}=k\left(\frac{q_{2} \sin \theta}{a^{2}+b^{2}}+\frac{q_{3}}{a^{2}}\right)$
$\theta=\tan ^{-1}\left(\frac{a}{b}\right)=\tan ^{-1}\left(\frac{8.00 \mathrm{~m}}{6.00 \mathrm{~m}}\right)=53.1^{\circ}$
$a^{2}+b^{2}=(8.00 \mathrm{~m})^{2}+(6.00 \mathrm{~m})^{2}=100 \mathrm{~m}^{2}$
$E_{x}=8.99 \cdot 10^{9}\left(\frac{1.50 \mu \mathrm{C}}{(6.00 \mathrm{~m})^{2}}+\frac{(2.50 \mu \mathrm{C}) \cos \left(53.1^{\circ}\right)}{100 \mathrm{~m}^{2}}\right)=509 \mathrm{~N} / \mathrm{C}$
$E_{y}=8.99 \cdot 10^{9}\left(\frac{(2.50 \mu \mathrm{C}) \sin \left(53.1^{\circ}\right)}{100 \mathrm{~m}^{2}}+\frac{-3.50 \mu \mathrm{C}}{(8.00 \mathrm{~m})^{2}}\right)=-311 \mathrm{~N} / \mathrm{C}$
Physics for Scientists\&Engineers 2

Electric Field from an Electric Dipole

- A system of two oppositely charged point particles is called an electric dipole
- The vector sum of the electric field from the two charges gives the electric field of the dipole
- We have shown the electric field lines from a dipole

$$
\theta=\tan ^{-1}\left(\frac{E_{y}}{E_{x}}\right)=\tan ^{-1}\left(\frac{-311 \mathrm{~N} / \mathrm{C}}{509 \mathrm{~N} / \mathrm{C}}\right)
$$

$\theta=-31.5^{\circ}$
electric field points to the right and down

Electric Field from an Electric Dipole (2)
 - Let's get an expression for the electric field of a dipole along a line including both charges
 - We will derive a general expression good anywhere along the dashed line and then get an expression for the electric field a long distance from the dipole
 January 19, 2005
 Physics for Scientists \&Engineers 2

Electric Field from an Electric Dipole (4)

- The principle of superposition tells us that the electric field at any point x is the sum of the electric field from $+q$ and $-q$

$$
E=E_{+}+E_{-}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r_{+}^{2}}+\frac{1}{4 \pi \varepsilon_{0}} \frac{-q}{r_{-}^{2}}
$$

- Replacing r_{+}and r_{-}we get

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{\left(x-\frac{1}{2} d\right)^{2}}-\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{\left(x+\frac{1}{2} d\right)^{2}}
$$

Electric Field from an Electric Dipole (3)

- Let's put both charges on the x-axis a distance d apart
- Put - q at $x=-d / 2$
- Put $+q$ at $x=+d / 2$
- Calculate the electric field at a point P a distance x from the origin

January 19, 2005
Physics for Scientists\&Engineers 2

Electric Field from an Electric Dipole (5)

- Rearranging we get

$$
E=\frac{q}{4 \pi \varepsilon_{0} x^{2}}\left(\left(1-\frac{d}{2 x}\right)^{-2}-\left(1+\frac{d}{2 x}\right)^{-2}\right)
$$

- This equation gives the electric field everywhere on the x axis except for $x= \pm d$
- Let's look at this equation far away ($x \gg d$)

$$
E \approx \frac{q}{4 \pi \varepsilon_{0} x^{2}}\left(\left(1+\frac{d}{x}-\ldots\right)-\left(1-\frac{d}{x}+\ldots\right)\right)
$$

or

$$
E \approx \frac{q}{4 \pi \varepsilon_{0} x^{2}}\left(\frac{2 d}{x}\right)=\frac{q d}{2 \pi \varepsilon_{0} x^{3}}
$$

Definition of Electric Dipole

- We can define the vector electric dipole moment as a vector that points from the negative charge to the positive charge

$$
\vec{p}=q \vec{d}
$$

- p is the magnitude of the dipole moment
- q is the magnitude of one of the opposite charges
- d is the distance between the charges
- Using this definition we can write the electric field far away from an electric dipole as

$$
E=\frac{p}{2 \pi \varepsilon_{0} x^{3}}
$$

January 19, 2005 Physics for Scientists\&Engineers 2

Example = Electric Dipole Moment of Water

- Everyone knows that water is $\mathrm{H}_{2} \mathrm{O}$
- The charge distributions of the atoms are approximately spherical and the hydrogen atoms are arranged such that they make an angle of 105° with each other
Suppose we approximate the water molecules as two positive charges located at the center of the hydrogen atoms and two negative charges located at the center of the oxygen atom. What is the electric dipole moment of a water molecule?

Electric Dipole Moment of Water (2))

- We assume that the center of mass of the two hydrogen atoms is halfway between the two atoms and that the two positive charges are effectively located there
- The distance between the these two positive charges and the two negative charges assumed at the center of the oxygen atom is

$$
d=\left(10^{-10} \mathrm{~m}\right) \cos 52.5^{\circ}=0.6 \cdot 10^{-10} \mathrm{~m}
$$

- Our result for the electric dipole moment of water is then $p=2 e d=\left(3.2 \cdot 10^{-19} \mathrm{C}\right)\left(0.6 \cdot 10^{-10} \mathrm{~m}\right)=2 \cdot 10^{-29} \mathrm{C} \mathrm{m}$
- This oversimplified result is close to the known value of 6.2. $10^{-30} \mathrm{C} \cdot \mathrm{m}$
- Assumed charge distribution not what actually happens

January 19, $2005 \quad$ Physics for ScientistssEngineers 2

