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GaussGauss’’ Law for Various Charge Distributions Law for Various Charge Distributions

 We have applied Gauss’ Law to a point charge and showed
that we get Coulomb’s Law

 Now let’s look at more complicated distributions of charge
and calculate the resulting electric field

 We will use the quantity charge density to describe the
distribution of charge

 This charge density will be different depending on the
geometry

Symbol Name Unit 

!  Charge per length C/m  
"  Charge per area C/m2

 
#  Charge per volume C/m3
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Cylindrical SymmetryCylindrical Symmetry

 Let’s calculate the electric field from a conducting wire with charge per
unit length λ using Gauss’ Law

 We start by assuming a Gaussian surface in the form of a right cylinder
with radius r and length L placed around the wire such that the wire is
along the axis of the cylinder

 
!
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!
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Cylindrical Symmetry (2)Cylindrical Symmetry (2)

 From symmetry we can see that the electric field will
extend radially from the wire

 How?
• If we rotate the wire along its axis, the electric field must look the

same
• Cylindrical symmetry

• If we imagine a very long wire, the electric field cannot be
different anywhere along the length of the wire

• Translational symmetry

 Thus our assumption of a right cylinder as a Gaussian
surface is perfectly suited for the calculation of the
electric field using Gauss’ Law
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Cylindrical SymmetryCylindrical Symmetry

 The contribution to our integral from the caps of the
cylinder is zero because the electric field is always parallel
to the caps

 The electric field is always perpendicular to the wall of the
cylinder so we can write

 Rewriting we get the electric
field at a distance r from a
conducting wire with charge density λ
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Planar SymmetryPlanar Symmetry

 Assume that we have a thin, infinite non-conducting sheet
of positive charge

 The charge density in this case is the
 charge per unit area, σ

 From symmetry, we can see that the electric field will be
perpendicular to the surface of the sheet
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 To calculate the electric field using Gauss’ Law, we assume a Gaussian
surface in the form of a right cylinder with cross sectional area A and
height 2r, chosen to cut through the plane perpendicularly

 Because the electric field is perpendicular to the plane
everywhere, the electric field will be parallel to the
walls of the cylinder and perpendicular to the caps
of the cylinder

 Using Gauss’ Law we get

 Which gives us the electric field from an infinite
non-conducting sheet with charge density σ

Planar Symmetry (2)Planar Symmetry (2)
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 Assume that we have a thin, infinite conductor with positive
charge

 The charge density in this case is also the
 charge per unit area, σ

 From symmetry, we can see that the electric field will be
perpendicular to the surface of the sheet

Planar Symmetry (3)Planar Symmetry (3)
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 To calculate the electric field using Gauss’ Law, we assume a Gaussian
surface in the form of a right cylinder with cross sectional area A and
height r, chosen to cut through one side of the plane perpendicularly

 The field inside the conductor is zero so the cap inside the conductor
does not contribute to the integral

 Because the electric field is perpendicular to the plane everywhere,
the electric field will be parallel to the walls of the cylinder and
perpendicular to the cap of the cylinder outside the conductor

 Using Gauss’ Law we get

 Which gives us the electric field from an infinite
conducting sheet with charge density σ

Planar Symmetry (4)Planar Symmetry (4)
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Spherical SymmetrySpherical Symmetry

 Now let’s calculate the electric field from charge distributed as a
spherical shell

 Assume that we have a spherical shell of charge q with radius rs (gray)
 We will assume two different spherical Gaussian surfaces

• r > rs (blue)
• r < rs (red)
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Spherical Symmetry (2)Spherical Symmetry (2)

 Let’s start with the Gaussian surface outside the sphere of charge,
r > rs (blue)

 We know from symmetry arguments that the electric field will be radial
outside the charged sphere
• If we rotate the sphere, the electric field cannot change

• Spherical symmetry

 Thus we can apply Gauss’ Law and get

 Which we can rewrite as
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Spherical Symmetry (3)Spherical Symmetry (3)

 Let’s let’s take the Gaussian surface inside the sphere of charge,
r < rs (red)

 We know that the enclosed charge is zero so

 And we get the result that the electric
field is zero everywhere inside the
the spherical shell of charge

 Thus we obtain two results
• The electric field outside a spherical shell of charge is the same as that of

a point charge
• The electric field inside a spherical shell of charge is zero
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Spherical Symmetry (4)Spherical Symmetry (4)

 Now let’s calculate the electric field from charge distributed uniformly
throughout a sphere

 Assume that we have a solid sphere of charge q with radius r with
constant charge density per unit volume ρ

 We will assume two different spherical Gaussian surfaces
• r2 > r
• r1 < r
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Spherical Symmetry (5)Spherical Symmetry (5)

 Let’s start with a Gaussian surface with r1 < r
 From spherical symmetry we know that the electric field will be radial

and perpendicular to the Gaussian surface
 Gauss’ Law gives us

 We can rewrite this equation as
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Spherical Symmetry (6)Spherical Symmetry (6)

 We have a result as a function of the radius of our assumed Gaussian
surface, but we really need the result in terms of the total charge

 The charge enclosed by the assumed Gaussian surface is

 Which we can substitute back into the expression we obtained from
Gauss’s Law to get
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Spherical Symmetry (5)Spherical Symmetry (5)

 Now let’s look at a Gaussian surface with r2 > r
 From spherical symmetry we know that the electric field will be radial

and perpendicular to the Gaussian surface
 Gauss’ Law gives us

 We can rewrite this equation as

 Which is the same as the field from a point charge
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 Let’s now calculate the electric field resulting
from a ring of charge
• The ring has a radius R
• The ring lies in the x-y plane such that
z-axis is perpendicular to the plane of
the ring and the origin is at the center
of the ring

• The ring has a linear charge density λ
and total charge q

 What is the electric field
along the z-axis?

Electric Field from a Ring of ChargeElectric Field from a Ring of Charge
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 The differential charge due to a differential arc length is

 The differential electric field at a point P
along the z-axis is given by

 The component of the electric field along
z-axis is given by

Electric Field from a Ring of Charge (2)Electric Field from a Ring of Charge (2)
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 Now we need to integrate the contribution
to the electric field along the z-axis
around the ring

 Substituting in our expression for cosθ
we get

 Adding our expression for dE we get

Electric Field from a Ring of Charge (3)Electric Field from a Ring of Charge (3)
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 Our expression then becomes

 Remembering that

 We get the electric field along the z-axis

 If we are far away from the ring (z >> R)

Electric Field from a Ring of Charge (4)Electric Field from a Ring of Charge (4)
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