

Electric Potential Energy for a

System of Particles (2)

We start our calculation with the two charges at infinity

this action requires no work to be done on the charge

two point charges, q_1 and q_2

We then bring in point charge q_1

from infinity to a distance r from q_1

January 25, 2005

To illustrate the concept of the electric potential energy of a system

of particles we calculate the electric potential energy of a system of

Because there is no electric field and no corresponding electric force,

Keeping this charge stationary, we bring the second point charge q_2 in

Physics for Scientists&Engineers 2

 q_2

Example - Four Charges (3)
Now we bring in q_4 from infinity
and place it at (b,a)
the electric potential energy of the system is now
$U = \frac{kq_1q_2}{a_1 \text{ with } q_2} + \frac{kq_1q_3}{b_1} + \frac{kq_2q_3}{\sqrt{a^2 + b^2}} + \frac{kq_1q_4}{\sqrt{a^2 + b^2}} + \frac{kq_1q_4}{\sqrt{a^2 + b^2}} + \frac{kq_2q_4}{b_2 \text{ with } q_4} + \frac{kq_3q_4}{a_2 \text{ with } q_4}$
$U = (3.0 \cdot 10^{-3} \text{ J}) + (-6.7 \cdot 10^{-3} \text{ J}) + (-4.2 \cdot 10^{-5} \text{ J}) +$
$(5.0 \cdot 10^{-3} \text{ J}) + (1.8 \cdot 10^{-2} \text{ J}) + (-1.8 \cdot 10^{-2} \text{ J}) = 1.2 \cdot 10^{-3} \text{ J}$
January 25, 2005 Physics for Scientists&Engineers 2

