

Electric Potential Energy for a System of Particles

- Yesterday we discussed the electric potential energy of a point charge in a fixed electric field.
- Now we introduce the concept of the electric potential energy of a system of point charges.
- In the case of a fixed electric field, the point charge did not affect the electric field that did work on the charge
- Now we consider a system of point charges that produce the electric potential themselves

To study this situation, we begin with a system of charges that are infinitely far apart.

- To bring these charges into proximity with each other, we must do work on the charges, which changes the electric potential energy of that system.
January 25, 2005 Physics for Scientists\&Engineers 2
Electric Potentiall Energy for a
System of Particles (3)

We can write the electric potential of this two charge system as
$U=q_{2} V$
where

$V=\frac{k q_{1}}{r}$
Which means that the electric potential of the two charge system is
$U=\frac{k q_{1} q_{2}}{r}$
- If the two point charges have the same sign, then we must do work on
the particles to bring them together and keep them stationary
- If the two charges have opposite signs, we must do negative work on
the system to bring them together from infinity and hold them
motionless.

January 25, 2005

Example = Four Charges

- Consider a system of four point charges as shown. The four point charges have the values $q_{1}=+1.0 \mu C, q_{2}=+2.0 \mu C$, $q_{3}=-3.0 \mu C$, and $q_{4}=+4.0 \mu C$. The charges are placed such that $a=6.0 \mathrm{~m}$ and $b=4.0 \mathrm{~m}$.
- What is the electric potential energy of this system of four point charges?

January 25, 2005 Physics for Scientists\&Engineers 2

Example = Four Charges (3)

Now we bring in q_{4} from infinity
and place it at (b, a)
the electric potential energy of the system is now

January 25, 2005
Physics for Scientists\&Engineers 2

Example - Four Charges (2)

We start with q_{1}
We bring in q_{1} from infinity and place it at $(0,0)$

This action does not change the electric potential energy of the system Now we bring in q_{2} from infinity
and place it at $(0, a)$
the electric potential energy of the system is now
$U=k \frac{q_{1} q_{2}}{a}$
Now we bring in q_{3} from infinity
and place it at $(b, 0)$
the electric potential energy of the system is now
$U=\underbrace{\frac{k q_{1} q_{2}}{a}}_{q_{1} \text { with } q_{2}}+\frac{k q_{1} q_{3}}{\frac{k}{b}}+\frac{k q_{2} q_{3}}{\frac{k \text { wih } q_{3}}{\sqrt{a^{2}+b^{2}}}}$
January 25, $2005 \quad$ Physics for Scientists\&Engineers 2

