

Review

- The resistance R of a device is given by

$$
R=\rho \frac{L}{A}
$$

- ρ is resistivity of the material from which the device is constructed
- L is the length of the device
- A is the cross sectional area of the device

The temperature dependence of the resistivity of metals is given by

$$
\rho-\rho_{0}=\rho_{0} \alpha\left(T-T_{0}\right)
$$

- ρ is the resistivity at temperature T
- ρ_{0} is the resistivity at temperature T_{0}
- α is the temperature coefficient of electric resistivity for the material under consideration
February 3, 2005 Physics for Scientists\&Engineers 2 2

Review (2)

- The temperature dependence of the resistance of metals is given by

$$
R-R_{0}=R_{0} \alpha\left(T-T_{0}\right)
$$

- R is the resistance at temperature T
- R is the resistance at temperature T_{0}
- α is the temperature coefficient of electric resistivity for the material under consideration
- Ohm's Law for a circuit consisting of a resistor and a battery is given by

$$
V_{e m f}=i R
$$

- $V_{\text {emf }}$ is the emf or voltage produced by the battery
- i is the current

- R is the resistance of the resistor

Physics for Scientists \&Engineers 2

Review (3)

- We can visualize a circuit with a battery and a resistor in three dimensions

February 3,2005
Physics for Scientists\&Engineers 2

Resistances in Series

- Resistors connected such that all the current in a circuit must flow through each of the resistors are connected in series
- If we connect two resistors R_{1} and R_{2} in series with one source of emf with voltage $V_{\text {emf }}$, we have the circuit shown below

February 3,2005 Physics for Scientists \&Engineers 2

Two Resistors in 3D

- To illustrate the voltage drops in this circuit we can represent the same circuit in three dimensions
- The voltage drop across resistor R_{1} is V_{1}
- The voltage drop across resistor R_{2} is V_{2}
- The sum of the two voltage drops must equal the voltage supplied by the battery

$$
V_{e n f}=V_{1}+V_{2}
$$

Example: Internal Resistance of a Battery

- When a battery is not connected in a circuit, the voltage across its terminals is V_{+}
- When the battery is connected in series with a resistor with resistance R, current i flows through the circuit
- When current is flowing, the voltage, V, across the terminals of the battery is lower than V_{t}
- This drop occurs because the battery has an internal resistance, R_{i}, that can be thought of as being series with the external resistor
- We can express this relationship as

$$
V_{t}=i R_{e q}=i\left(R+R_{i}\right)
$$

Example: Internal Resistance of a Battery (2)

We can represent the battery, its internal resistance and the external resistance in this circuit diagram

- Consider a battery that has a voltage of 12.0 V when it is not connected to a circuit
- When we connect a 10.0Ω resistor across the terminals, the voltage across the battery drops to 10.9 V
- What is the internal resistance of the battery?

February, 2005
Physics for Scientists\&Engineers 2

Resistances in Paralle!

- Instead of connecting resistors in series so that all the current must pass through both resistors, we can connect the resistors in parallel such that the current is divided between the two resistors
- This type of circuit is shown is below $V_{\text {emf }}$

Resistance in Parallell (2)

- In this case the voltage drop across each resistor is equal to the voltage provides by the source of emf
- Using Ohm's Law we can write the current in each resistor

$$
i_{1}=\frac{V_{\text {enf }}}{R_{1}} \quad i_{2}=\frac{V_{\text {enf }}}{R_{2}}
$$

- The total current in the circuit must equal the sum of these currents

$$
i=i_{1}+i_{2}
$$

- Which we can rewrite as

$$
i=i_{1}+i_{2}=\frac{V_{\text {enf }}}{R_{1}}+\frac{V_{\text {enf }}}{R_{2}}=V_{\text {enf }}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)
$$

February 3,2005
Physics for Scientists \&Engineers 2

Resistance in Parallel (3)

- We can then rewrite Ohm's Law as

$$
i=V_{e n f} \frac{1}{R_{e q}}
$$

- Where
$\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$
- We can generalize this result for two parallel resistors to n parallel resistors

$$
\frac{1}{R_{e q}}=\sum_{i=1}^{n} \frac{1}{R_{i}}
$$

February 3,2005 Physics for Scientists \&Engineers 2

Example: Network of Resistors

- Consider a network of resistors as shown below

- What is the current flowing in this circuit?

February, $2005 \quad$ Physics for Scientists\&Engineers 2

Example: Network of Resistors (3)

- We see that R_{2}, R_{5}, R_{6}, and R_{134} are in series

$$
R_{123456}=R_{2}+R_{5}+R_{6}+R_{134}
$$

$$
R_{123456}=R_{2}+R_{5}+R_{6}+\frac{R_{1} R_{34}}{R_{1}+R_{34}}
$$

$$
R_{123456}=R_{2}+R_{5}+R_{6}+\frac{R_{1}\left(R_{3}+R_{4}\right)}{R_{1}+R_{3}+R_{4}}
$$

$$
i=\frac{V_{e m f}}{R_{123456}}
$$

February 3 , 2005
Physics for Scientists\&Engineers 2

Energy and Power in Electric Circuits

Consider a simple circuit in which a source of emf with voltage V causes a current i to flow in a circuit

- The work required to move a differential amount of charge $d q$ is equal to the differential electric potential energy $d U$ given by $d U=d q V$
- The definition of current is

$$
i=d q / d t
$$

- So we can rewrite the differential electric potential energy as $d U=i d t V$
- The definition of power P is
$P=d U / d t$
- Which gives us

$$
P=\frac{d U}{d t}=\frac{i d t V}{d t}=i V
$$

February 3, $2005 \quad$ Physics for Scientists EEngineers 2

Energy and Power

- The power dissipated in a circuit or circuit element is given by the product of the current times the voltage
- Using Ohm's Law we can write equivalent formulations of the power

$$
P=i V=i^{2} R=\frac{V^{2}}{R}
$$

- The unit of power is the watt (W)
- Electrical devices are rated by the amount of power they consume in watts
- Your electricity bill is based on how many kilowatt-hours of electrical energy you consume
- The energy is converted to heat, motion, light, ...

February 3, $2005 \quad$ Physics for ScientistssEngineers 2

Single Loop Circuits (2)

- Starting at point a with $V=0$, we proceed around the circuit in a clockwise direction
- Because the components of the circuit are in series, the current in each compone *• "•

Single Loop Circuits (3)

The first circuit component is a source of emf $V_{\text {emf. } 1,}$ which produces a positive voltage gain of $V_{e m f, 1}$
Next we find resistor R_{1}, which produces a voltage drop V_{1} given by $i R_{1}$ - Continuing around the circuit we find resistor R_{2}, which produces a voltage drop V_{2} given by $i R_{2}$

- Next we meet a second source of emf, $V_{\text {emf } 2}$

This source of emf is wired into the circuit with a polarity opposite that of $V_{\text {emf, } 1}$

- We treat this component as a voltage drop with magnitude of $V_{\text {emf,2 }}$ rather than a voltage gain
We now have completed the circuit and we are back at point a

February, 2005
Physics for Scientists\&Engineers 2

Single Loop Circuits (4))

- We can write the analysis of the voltages in this circuit as

$$
V_{e m f, 1}-V_{1}-V_{2}-V_{e m f, 2}=V_{e m f, 1}-i R_{1}-i R_{2}-V_{e m f, 2}=0
$$

- We can generalize this result to state that the voltage drops across components in a single loop circuit must sum to zero
- This statement must be qualified with conventions for assigning the sign of the voltage drops around the circuit
- We must define the direction with which we move around the loop and we must define the direction of the current
- If we move around the circuit in the same direction as the current, the voltage drops across resistors will be negative
- If we move around the circuit in the opposite direction from the current, the voltage drops across resistors will be positive

Single Loop Circuits (5)

If we move around the circuit and encounter a source of emf pointing in the same direction, we assume that this component contributes a positive voltage
If we encounter a source of emf pointing in the opposite direction, we consider that component to contribute a negative voltage

- Thus we will get the same information from the analysis of a simple circuit independent of the direction we choose to analyze the circuit.

