

Resistances in Series

- Resistors connected such that all the current in a circuit must flow through each of the resistors are connected in series
- If we connect two resistors R_1 and R_2 in series with one source of emf with voltage V_{emf} , we have the circuit shown below

Two Resistors in 3D To illustrate the voltage drops in this circuit we can represent the same circuit in three dimensions The voltage drop across resistor R_1 R is V_1 The voltage drop across resistor R₂ is V2 The sum of the two voltage drops must equal the voltage supplied by the battery $V_{emf} = V_1 + V_2$ February 3, 2005 Physics for Scientists&Engineers 2

- The current must flow through all the elements of the circuit so the current flowing through each element of the circuit is the same
- For each resistor we can apply Ohm's Law

$$V_{emf} = iR_1 + iR_2 = iR_d$$

Where

February 3, 2005

$$R_{eq} = R_1 + R_2$$

We can generalize this result for a circuit with two resistors in series to a circuit with *n* resistors in series

 $R_{aa} =$

Physics for Scientists&Engineers 2

Single Loop Circuits

- We have been studying circuits with various networks of resistors but only one source of emf
- Circuits can contain multiple sources of emf as well as multiple resistors
- We begin our study of more complicated circuits by analyzing a circuit with two sources of emf
 - $V_{emf,1}$ and $V_{emf,2}$
- And two resistors
 - R_1 and R_2
- connected in series in a single loop
- We will assume that the two sources of emf have opposite polarity

February 3, 2005

Physics for Scientists&Engineers 2

5

Single Loop Circuits (3)

- The first circuit component is a source of emf V_{emf,1}, which produces a
 positive voltage gain of V_{emf,1}
- Next we find resistor R₁, which produces a voltage drop V₁ given by iR₁
- Continuing around the circuit we find resistor R_2 , which produces a voltage drop V_2 given by iR_2
- Next we meet a second source of emf, V_{emf,2}
- This source of emf is wired into the circuit with a polarity opposite that of V_{emf1}
- We treat this component as a voltage drop with magnitude of V_{emf,2} rather than a voltage gain
- We now have completed the circuit and we are back at point a

February 3, 2005

February 3, 2005

Physics for Scientists&Engineers 2

Single Loop Circuits (5)

23

- If we move around the circuit and encounter a source of emf pointing in the same direction, we assume that this component contributes a positive voltage
- If we encounter a source of emf pointing in the opposite direction, we consider that component to contribute a negative voltage
- Thus we will get the same information from the analysis of a simple circuit independent of the direction we choose to analyze the circuit.

Physics for Scientists&Engineers 2

Single Loop Circuits (4)

 $V_{\rm emf,1} - V_1 - V_2 - V_{\rm emf,2} = V_{\rm emf,1} - iR_1 - iR_2 - V_{\rm emf,2} = 0$

- We can generalize this result to state that the voltage drops across components in a single loop circuit must sum to zero
- This statement must be qualified with conventions for assigning the sign of the voltage drops around the circuit
- We must define the direction with which we move around the loop and we must define the direction of the current
- If we move around the circuit in the same direction as the current, the voltage drops across resistors will be negative
- If we move around the circuit in the opposite direction from the current, the voltage drops across resistors will be positive

February 3, 2005

Physics for Scientists&Engineers 2

22