

Review (2)

- If we run a current i through a conductor of width h in a constant magnetic field B, we induce a voltage V_{H} across the conductor that is given by

$$
B=\frac{V_{H}}{d v}=\frac{V_{H} d h n e}{d i}=\frac{V_{H} h n e}{i}
$$

- where n is the number of electrons per unit volume and e is the charge of an electron
- Hall Effect

February 24, 2005
Physics for Scientists\&Engineers 2

Review

- A charged particle with charge q and mass m moving with speed v perpendicular to a constant magnetic field with magnitude B will travel in a circle with radius r given by

$$
r=\frac{m v}{q B}
$$

- For the same conditions we can relate the momentum p and the charge q to the magnitude of the magnetic field B and the radius r of the circular motion

$$
B r=\frac{p}{q}
$$

Februar 24, 2005
Physics for ScientiststsEngineers 2

Magnetic Fields

- Let's address the problem of calculating magnetic fields generated by moving charges
- Remember that we calculated the electric field in terms of the electric charge using the form

$$
d E=\frac{1}{4 \pi \varepsilon_{0}} \frac{d q}{r^{2}}
$$

- where $d q$ is a charge element
- The electric field points radially from the electric charge so that we can write

$$
d \vec{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{d q}{r^{3}} \vec{r}
$$

Magnetic Fields (2)

- The magnetic field has an added complication because the current that produces the magnetic field has a direction
- The electric field is produced by charge that is a scalar
- We can write the magnetic field produced by a current element ids as

$$
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{i d \vec{s} \times \vec{r}}{r^{3}}
$$

- This formula is the Biot-Savart Law
- μ_{0} is the magnetic permeability of free space whose value is

$$
\mu_{0}=4 \pi \cdot 10^{-7} \frac{\mathrm{Tm}}{\mathrm{~A}}
$$

Magnetic Fields (3)

- The direction of the magnetic field produced by the current element is perpendicular to both the radial direction and to the current element
- The magnitude of the magnetic field is given by

$$
d B=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin \theta}{r^{2}}
$$

- Where θ is the angle between the radial direction and the current element
- Let's calculate the magnetic field for various current element distributions

February 24, $2005 \quad$ Physics for Scientists\&Engineers 2

Magnetic Field from a Long, Straight Wire (2)

- We will calculate the magnetic field from the right half of the wire and multiply by two to get the magnetic field from the whole wire
- The magnitude of the magnetic field from the right side of the wire is given by

$$
B=2 \int_{0}^{\infty} d B=2 \int_{0}^{\infty} \frac{\mu_{0}}{4 \pi} \frac{i d s \sin \theta}{r^{2}}=\frac{\mu_{0} i}{2 \pi} \int_{0}^{\infty} \frac{d s \sin \theta}{r^{2}}
$$

- We can relate r, s, and θ by

$$
r=\sqrt{s^{2}+r_{\perp}^{2}} \quad \sin \theta=\frac{r_{\perp}}{\sqrt{s^{2}+r_{\perp}^{2}}}
$$

Februar 24, 2005
Physiss tor Scientists E Engineers 2

Magnetic Field from a Long, Straight Wire (3)

Substituting we get

$$
B=\frac{\mu_{0} i}{2 \pi} \int_{0}^{\infty} \frac{r_{\perp} d s}{\left(s^{2}+r_{\perp}^{2}\right)^{3 / 2}}
$$

Carrying out this integral we get

$$
B=\frac{\mu_{0} i}{2 \pi}\left[\frac{1}{r_{\perp}^{2}} \frac{r_{\perp} s}{\left(s^{2}+r_{\perp}^{2}\right)^{1 / 2}}\right]_{0}^{\infty}=\frac{\mu_{0} i}{2 \pi r_{\perp}}\left(\frac{s}{\left(s^{2}+r_{\perp}^{2}\right)^{1 / 2}}\right)_{s \rightarrow \infty}-0
$$

- So our resulting equation for the magnetic field at a perpendicular distance from a long, straight wire carrying a current is

$$
B\left(r_{\perp}\right)=\frac{\mu_{0} i}{2 \pi r_{\perp}}
$$

Magnetic Field from a Loop

- Let's calculate the magnetic field at the center of a circular loop of wire carrying current
We start with

$$
d B=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin \theta}{r^{2}}
$$

- and apply it to this case
- We can see that $r=R$ and $\theta=90^{\circ}$ for every current element along the loop
- For the magnetic field from each current element we get

$$
d B=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin 90^{\circ}}{R^{2}}=\frac{\mu_{0}}{4 \pi} \frac{i d s}{R^{2}}
$$

Magnetic Field from a Long, Straight Wire (4)

- The direction of the magnetic field is given by the right hand rule
- If you grab the wire such that your thumb points in the direction of the current, your fingers will point in the direction of the magnetic field as shown

- Looking down the wire, the magnetic field lines form circles

February 24, 2005
Physics for ScientiststsEngineers 2

Magnetic Field from a Loop (2)

- Going around the loop, we can relate an angle ϕ to the current element by $d S=R d \phi$ allowing us to calculate the magnetic field at the center of the loop

$$
B=\int d B=\int_{0}^{2 \pi} \frac{\mu_{0}}{4 \pi} \frac{i R d \phi}{R^{2}}=\frac{\mu_{0} i}{2 R}
$$

- Please keep in mind that this calculation only gives us information on the value of the magnetic field at the center of the loop
- Using other techniques, we can calculate the magnetic field everywhere is shown to the right

Ampere's Law

Ampere's Law (2)

- In a similar way we can calculate the magnetic field from an arbitrary distribution of current elements using

$$
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{i d \vec{s} \times \vec{r}}{r^{3}}
$$

- However, we again may be faced with a difficult integral
- In cases where the distribution of current elements has cylindrical or spherical symmetry, we can apply Ampere's Law to calculate the magnetic field from a distribution of current elements with much less effort than using a direct integration
Ampere's Law is

$$
\oint \vec{B} \cdot d \vec{s}=\mu_{0} i_{e n c}
$$

Where the integral is carried out around an Amperian loop and $i_{\text {enc }}$ is the current enclosed by the loop

February 24, 2005
Physics for Scientists \&Engineers 2

Magnetic Field inside Long Wire

- Consider a current i flowing out of the page in a wire with a circular cross section of radius R
- This current is uniformly distributed over the cross sectional area of the wire
- To find the magnetic field we use an Amperian loop with radius represented by the red circle
- The magnetic field is tangential to this Amperian loop so we can write the left side of Ampere's Law as

$$
\oint \vec{B} \bullet d \vec{s}=B \oint d \vec{s}=B 2 \pi r_{\perp}
$$

We can draw an Amperian loop represented by the red line

- This loop encloses currents i_{1}, i_{2}, and i_{3} and excludes i_{4} and i_{5}
- A direction of integration is shown above along with the resulting
- The sign of the contributing currents can be determined using a right hand rule by pointing your fingers along the direction of integration and magnetic field pointing your palm at the current
- your thumb will indicate the positive direction

Magnetic Field inside Long Wire (2)

- The right hand side of Ampere's Law contains the enclosed current
- The enclosed current can be calculated from the ratio of the area of the Amperian loop to the cross sectional area of the wire

$$
i_{\text {enc }}=i \frac{A_{\text {loop }}}{A_{\text {wire }}}=i \frac{\pi r_{\perp}^{2}}{\pi R^{2}}
$$

- Equating the left and right sides we get

$$
i \frac{r_{\perp}^{2}}{R^{2}}=B 2 \pi r_{\perp}
$$

- or

$$
B\left(r_{\perp}\right)=\left(\frac{\mu_{0} i}{2 \pi R^{2}}\right) r_{\perp}
$$

February 24, 2005
Physics for Scientists \&Engineers 2

Magnetic Field inside Long Wire (3)

- We can look at the magnetic field
as a function of the distance from the center of the wire, r_{\perp}
- The magnitude of the magnetic field varies linearly with the distance from the center of the wire until we reach the radius of the wire, R
- For distances from the center of wire greater than the radius of the wire, we get our previous result for a long straight wire (varies with the distance from the center)

February 24,2005

