Energy Transport

Physics for Scientists \& Engineers 2

Spring Semester 2005
Lecture 35

Review (2)

- The energy in the electric and magnetic fields of the electromagnetic wave are equal

$$
u_{E}=\frac{1}{2} \varepsilon_{0} E^{2}=u_{B}=\frac{1}{2 \mu_{0}} B^{2}
$$

- The radiation pressure due to a totally absorbed electromagnetic wave is

$$
p_{r}=\frac{I}{c}
$$

- The radiation pressure due to a reflected electromagnetic wave is just twice the absorbed value

$$
p_{r}=\frac{2 I}{c}
$$

- The rate of energy transported by an electromagnetic wave is given by the Poynting vector

$$
\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}
$$

- The instantaneous power per unit area of the wave is given by

$$
S=|\vec{S}|=\left(\frac{\text { power }}{\text { area }}\right)_{\text {instantaneous }}
$$

- The intensity of the wave is given by the average power per unit area

$$
I=S_{\text {ave }}=\left(\frac{\text { power }}{\text { area }}\right)_{\text {ave }}
$$

Polarization

- Consider the electromagnetic wave shown
- The electric field for this electromagnetic wave always points along the y-axis
- Taking the x-axis as the direction that the wave is traveling, we can define a plane of oscillation for the electric field of the
 electromagnetic wave as shown
- This type of wave is called a plane-polarized wave in the y direction
- We can represent the polarization of an electromagnetic wave by looking at the electric field vector of the wave in the $x-z$ plane, which is perpendicular to the direction the wave is traveling
- The electric field oscillates in the y-plane

Polarization (2)

- The electromagnetic waves making up the light emitted by most common light sources such as an incandescent light bulb have random polarizations
- Each wave has its electric field vector oscillating in a different plane
- This light is called unpolarized light
- We can represent the polarization of the light from an unpolarized source by drawing many waves like the one shown on the previous page but with random orientations

March 25, 2005

Physics for Scientists\&Engineers 2

Polarization (3)

- We can represent light with many polarizations by summing the y components and summing the z components to produce the net y and z components
- For unpolarized light, we obtain equal components in the y - and z-directions
- If there is less net polarization in the y direction than in the z direction,
then we say that the light is partially polarized in the z direction

March 25, 2005
Physics for Scientists\&Engineers 2

Polarization (4)

- We can change unpolarized light to polarized light by passing the unpolarized light through a polarizer
- A polarizer allows only one component of the polarization of the light to pass through
- One way to make a polarizer is to produce a material the consists of long parallel chains of molecules that effectively let components of the light pass with one polarization and block light with components perpendicular to that direction
- We will discuss polarizers without taking into account the details of the molecular structure
- Instead we will characterize each polarizer with a polarizing direction
- Unpolarized light passing through a polarizer will emerge polarized in the polarizing direction
\qquad

Polarization (5)

- The components of the unpolarized light that have same polarization as the polarizer are transmitted but the components of the light that are perpendicular to the polarizer are absorbed
- If polarized light with polarization parallel to the polarizing angle is incident on the polarizer, all the light passes through

- If polarized light with polarization perpendicular to the polarizing angle is incident on the polarizer, none of the light is transmitted

Polarization (6)

- Now let's consider the intensity of the light that passes through a polarizer
- We begin with unpolarized light with intensity I_{0}
- Unpolarized light has equal components of polarization in the y and z directions
- After passing through a vertical polarizer only the y component of the polarization remains
- The intensity I of the light passing through the polarizer is given by

$$
I=\frac{1}{2} I_{0}
$$

- because the unpolarized light had equal contribution from the y and z components and only the y components are transmitted by the vertical polarizer
- This factor of one half only applies to the case of unpolarized light passing through a polarizer

```
March 25,2005
Physics for Scientists&Engineers 2
```


Polarization (8)

- After the light passes through the polarizer, the intensity I is given by

$$
I=\frac{1}{2 c \mu_{0}} E^{2}
$$

- The transmitted intensity in terms of the initial intensity is

$$
I=\frac{1}{2 c \mu_{0}} E^{2}=\frac{1}{2 c \mu_{0}}\left(E_{0} \cos \theta\right)^{2}=I_{0} \cos ^{2} \theta
$$

- This result is called the Law of Malus
- This equation only applies to the case of polarized light incident on a polarizer
- Now we will do a specific example of the intensity of light passing through polarizers

Polarization (7)

- Now let's assume that polarized light passes through a polarizer and that this light has a polarization that is not parallel or perpendicular to the polarizing direction of the polarizer
- The angle between the incident polarization is θ

- The component of the electric field E of the light that is transmitted is given by

$$
E=E_{0} \cos \theta
$$

- where E_{0} is the electric field of the incident polarized light
- The intensity of the light I_{0} before the polarizer is given by

$$
I_{0}=\frac{1}{c \mu_{0}} E_{r m s}^{2}=\frac{1}{2 c \mu_{0}} E_{0}^{2}
$$

```
March 25, 2005
```


Example: Three Polarizers

- Consider the case of unpolarized light with intensity I_{0} incident on three polarizers

- The first polarizer has a polarizing direction that is vertical
- The second polarizer has a polarizing angle of 45° with respect to the vertical
- The third polarizer has a polarizing angle of 90° with respect to the vertical
- What is the intensity of the light passing through all the polarizers in terms of the initial intensity?

Example: Three Polarizers (2)

- The intensity of the unpolarized light is I_{0}
- The intensity of the light passing through the first polarizer is

$$
I_{1}=\frac{1}{2} I_{0}
$$

- The intensity of the light passing the second polarizer is

$$
I_{2}=I_{1} \cos ^{2}\left(45^{\circ}-0^{\circ}\right)=I_{1} \cos ^{2}\left(45^{\circ}\right)=\frac{1}{2} I_{0} \cos ^{2}\left(45^{\circ}\right)
$$

- The intensity of the light passing the third polarizer is

$$
I_{3}=I_{2} \cos ^{2}\left(90^{\circ}-45^{\circ}\right)=I_{2} \cos ^{2}\left(45^{\circ}\right)=\frac{1}{2} I_{0} \cos ^{4}\left(45^{\circ}\right)=I_{0} / 8
$$

- The fact that $1 / 8^{\text {th }}$ of the intensity of the light is transmitted is somewhat surprising because polarizers 1 and 3 have polarizing angles that are perpendicular to each other
- The fact that polarizer 2 is in between these two polarizers allows light to pass through

