Physics for Scientists \& Engineers 2

Spring Semester 2005
Lecture 38

Lenses

- When light is refracted crossing a curved boundary between two different media, the light rays follow the law of refraction at each point on the boundary
- The angle at which the light rays cross the boundary is different along the boundary, so the refracted angle is different at different points along the boundary
- A curved boundary between two optically transparent media is called a lens
- Light rays that are initially parallel before they strike the boundary are refracted in different directions depending on the part of the lens they strike
- Depending of the shape of the lens, the light rays can be focused or caused to diverge
- The index of refraction of an optical material, n, is given by

$$
n=\frac{c}{v}
$$

- c is the speed of light in a vacuum
- v is the speed of light in the optical material
- $n \geq 1, n_{\text {vacuum }}=1$
- We will use $n_{\text {air }}=1$
- The Law of Refraction or Snell's Law can be expressed as

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

Lens Maker Formula

- If the front surface of the lens is part of the surface of a sphere with radius R_{1} and the back surface of the lens is part of the surface of a sphere with radius R_{2}, then we can calculate the focal length f of the lens using the lens-makers formula

$$
\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

- Note that in this equation R_{2} is negative because it has the opposite curvature from the front surface
- If we have a lens with the same radii on the front and back of the lens so that $R_{1}=R_{2}=R$, we get

$$
\frac{1}{f}=\frac{2(n-1)}{R}
$$

Lens Focal Lengths

des

- Unlike mirrors, lenses have a focal length on both sides
- Light can pass through lenses while mirrors reflect the light allowing no light on the opposite side
- The focal length of a convex (converging) lens is defined to be positive
- The focal length of a concave (diverging) lens is defined to be negative.

March 29, 2005

$$
\text { Physics for Scientists\&Engineers } 2
$$

Convex (converging) lens
\rightarrow 5

Convex Lenses

- A convex lens is shaped such that parallel rays will be focused by refraction at the focal distance f from the center of the lens
- In the drawing on the right, a light ray is incident on a convex glass lens
- At the surface of the lens, the light ray is refracted toward the normal
- When the ray leaves the lens, it is refracted away from the normal
- Let us now study the case of several horizontal light rays incident on a convex lens
- These rays will be focused to a point a distance f from the center of the lens on the opposite side from the incident rays

Images with Convex Lenses

- Convex lenses can be used to form images
- We show the geometric construction of the formation of an image using a convex lens with focal length f

- We place an object standing on the optical axis represented by the green arrow
- This object has a height h_{0} and is located a distance d_{0} from the center of the lens such that $d_{0}>f$

Images with Convex Lenses (2)

- We start with a ray along the optical axis of the lens that passes straight through the lens that defines the bottom of the image.
- A second ray is then drawn from the top of the object parallel to the optical axis
- This ray is focused through the focal point on the other side of the lens
- A third ray is drawn through the center of the lens that is not refracted in the thin lens approximation
- A fourth ray is drawn from the top of the object through the focal point on h the same side of the lens that is then directed parallel to the optical axis

Concave Lenses

- A concave lens is shaped such that parallel rays will be caused to diverge by refraction such that their extrapolation would intersect at a focal distance from the center of the lens on the same side of the lens as the rays are incident
- Assume that a light ray parallel to the optical axis is incident on a concave glass lens
- At the surface of the lens, the light rays are refracted toward
 the normal
- When the rays leave the lens, they are refracted away from the normal as shown
- The extrapolated line shown as a red and black dashed line that points to the focal point on the same side of the lens as the incident ray

Images with Convex Lenses (3)

- Now let us consider the image formed by an object with height placed a distance from the center of the lens such that $d_{0}<f$
- The first ray again is drawn from the bottom of the object along the optical axis
- The second ray is drawn from the top of the object parallel to the optical axis and is focused through the focal point on the opposite side
- A third ray is drawn through the center of the lens
- A fourth line is drawn such that it originated from the focal point on the same side of the lens and is then focused parallel to the optical axis
- These three rays are diverging
- A virtual image is located on the

March 29, $2005 \quad$ Physics for Scientists\&Engineers 2 $\quad 10$

Concave Lenses (2)

- Let us now study several horizontal light rays incident on a concave lens
- After passing through the lens, the rays will diverge such that their extrapolations intersect at a point a distance f from the center of the lens on the same side of the lens as the incident rays
- To the right is a concave lens with five parallel lines of light incident in the surface of a concave lens from the left
- In the second panel we have drawn red lines representing light rays
- We can see that the light rays diverge after passing through the lens

- We have drawn red and black dashed lines to show the extrapolation of the diverging rays
- The extrapolated rays intersect a focal length away from the center of the lens
- In the third panel we draw the diverging rays using the thin lens approximation where the incident rays are drawn to the center of the lens

Images formed with Concave Lenses

- Here we show the formation of an image using a concave lens
- We place an object standing on the optical axis represented by the green arrow
- This object has a height h_{0} and is located a distance d_{0} from the center of the lens such that $d_{0}>f$
- We again start with a ray along the optical axis of the lens that passes straight through the lens that defines the bottom of the image
- A second ray is then drawn from the top of the object parallel to the optical axis
- This ray is refracted such that its
extrapolation of the diverging ray passes
through the focal point on the other side of the lens

- A third ray is drawn through the center of the lens that is not refracted in the thin lens approximation
- This ray is extrapolated back along its original path
- The image formed is virtual, upright, and reduced

March 29, 2005

Physics for Scientists\&Engineers 2

Special Cases

- For a convex lens, we find that for $d_{0}>f$ we always get a real, inverted image formed on the opposite side of the lens
- For a convex lens and $d_{0}<f$, we always get a virtual, upright, and enlarged image on the same side of the lens as the object
- The special cases for $d_{0}>f$ for a convex lens are

Case	Type	Direction	Magnification
$f<d_{o}<2 f$	Real	Inverted	Enlarged
$d_{o}=2 f$	Real	Inverted	Same size
$d_{o}>2 f$	Real	Inverted	Reduced

- For concave lenses, we always get an image that is virtual, upright, and reduced in size

The Lens equation

- The images formed by lenses are described by the lens equation

$$
\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f}
$$

- Twis equation is the same relationship between focal length, image distance, and object distance that we had found for mirrors
- To treat all possible cases for lenses, we must define some conventions for distances and heights
- We define the focal length f of a convex lens to be positive and the focal length of a concave lens to be negative
- We define the object distance d_{0} to be positive
- If the image is on the opposite side of the lens from the object, the image distance d_{i} is positive and the image is real
- If the image is on the same side of the lens as the object, the image distance d_{i} is negative and the image is virtual
- If the image is upright, then h_{i} is positive and if the image is inverted, h_{i} is negative

$$
\text { March 29, } 2005 \quad \text { Physics for Scientists\&Engineers } 2
$$

Magnification for Lenses

- The magnification m of a lens is defined the same as as for a mirror

$$
m=-\frac{d_{i}}{d_{o}}=-\frac{h_{i}}{h_{o}}
$$

- d_{0} is the object distance
- h_{o} is the object height
- d_{i} is the image distance
- h_{i} is the image height
- If $|m|>1$, the image is enlarged
- If $|m|<1$, the image is reduced
- If $m<0$, the image is inverted
- If $m>0$, the image is upright

Power of Lenses

- The power of a lens is often quoted rather than its folca length
- The power of a lens, D (diopters), is given by the equation

$$
D=\frac{1 \mathrm{~m}}{f}
$$

- For example, common reading glasses have a power of $D=1.5$ diopters
- The focal length of these glasses is

$$
f=\frac{1 \mathrm{~m}}{1.5 \text { diopters }}=0.67 \mathrm{~m}
$$

March 29, 2005

Example: Image formed by Convex Lens

- The focal length of a converging lens is 21 cm . An object is located a distance $d_{0}=32 \mathrm{~cm}$ from the center of the lens.
- Where is the image?

$$
\begin{aligned}
& \text { convex lens } \Rightarrow f \text { is positive } \\
& \frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f} \Rightarrow d_{i}=\frac{d_{o} f}{d_{o}-f} \\
& d_{i}=\frac{(0.320 \mathrm{~m})(0.210 \mathrm{~m})}{(0.320 \mathrm{~m})-(0.210 \mathrm{~m})}=0.61 \mathrm{~m} \\
& \text { image will be located } 61 \mathrm{~cm} \text { to the right of the lens } \\
& m=-\frac{d_{i}}{d_{o}}=-\frac{h_{i}}{h_{o}}=-\frac{0.61 \mathrm{~m}}{0.21 \mathrm{~m}}=-2.9 \Rightarrow \text { enlarged, inverted }
\end{aligned}
$$

