

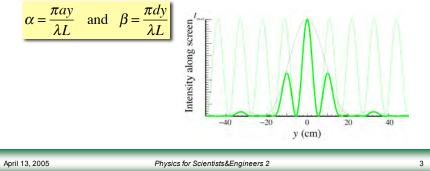
Review

 The criterion for being able to separate two point objects is called Rayleigh's Criterion and is expressed as

Review (2)

April 13, 2005

 With diffraction effects the intensity of the interference pattern from double slits is given by


Physics for Scientists & Engineers 2

> Spring Semester 2005 Lecture 46

> > Physics for Scientists&Engineers 2

$$= I_{\max} \cos^2 \beta \left(\frac{\sin \alpha}{\alpha}\right)^2 \quad \alpha = \frac{\pi a}{\lambda} \sin \theta \quad \beta = \frac{\pi d}{\lambda} \sin \theta$$

• If the screen is placed a sufficiently large distance from the slits then we can write

- A diffraction grating has a large number of slits, or rulings, placed very close together
- To produce bright lines or constructive interference this path length difference must be an integer multiple of the wavelength so

 $d\sin\theta = m\lambda \quad (m = 0, 1, 2, ...)$

- The values of *m* correspond to different bright lines
- The dispersion describes the ability of a diffraction grating to spread apart the various orders

$$D = \frac{\Delta\theta}{\Delta\lambda} = \frac{m}{d\cos\theta} \quad (m = 1, 2, 3, ...)$$

April 13, 2005

Resolving Power of a Grating

- The resolving power R of a diffraction grating describes the ability of the diffraction grating to resolve closely spaced maxima, which depends on the width of each maximum
- We define the power of a diffraction grating to resolve two wavelengths, λ_1 and λ_2 , as

$$R = \frac{\lambda_{ave}}{\Delta \lambda} \quad \lambda_{ave} = (\lambda_1 + \lambda_2) / 2 \quad \Delta \lambda = |\lambda_2 - \lambda_1|$$

- Thus to discuss the resolving power, we need an expression for the width of each maximum
- The width of each maximum is defined by the position of the first minimum on each side of the maximum
- We can then define the half-width θ_{hw} of the maximum as the angle between the maximum and the first minimum

April 13, 2005

Physics for Scientists&Engineers 2

Resolving Power of a Grating (3)

• We can substitute θ_{hw} for $\Delta \theta$

$$\frac{\Delta\theta}{\Delta\lambda} = \frac{\lambda}{Nd\cos\theta\Delta\lambda} = \frac{m}{d\cos\theta}$$

Which gives us

$$R = \frac{\lambda}{\Delta \lambda} = Nm \qquad \lambda \approx \left(\lambda + (\lambda + \Delta \lambda)\right) / 2$$

• Note that the resolving power of a diffraction grating depends on the total number of rulings and the order

- We base our argument our analysis of single slit diffraction using the whole grating as the single slit as shown
- The angle of the first minimum for single slit diffraction can be obtained where we substitute *Nd* for the slit width *a*

 $Nd\sin\theta_{hw} = \lambda$

Because θ_{hw} is small, we can write

$$\theta_{hw} = \frac{\lambda}{Nd}$$

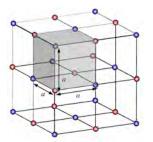
• One can show that the width of the maxima for other orders is

$$\theta_{hw} = \frac{\lambda}{Nd\cos\theta}$$

• θ is the angle corresponding to the maximum intensity for that order

No

April 13, 2005



- X-Ray Diffraction
- Wilhelm Röntgen discovered x-rays in the late 1800's
- These experiments suggested that x-rays were electromagnetic waves with a wavelength of about $10^{\text{-10}}\ \text{m}$
- At about the same time, the study of crystalline solids suggested that the atoms of those solids were arranged in a regular repeating pattern with a spacing of about 10⁻¹⁰ m between the atoms
- Putting these two ideas together, Max von Laue proposed in the early 1900's that a crystal could serve as a three dimensional diffraction grating for x-rays
- Von Laue and Friederich Knipping did the first x-ray diffraction experiment that showed diffraction of x-rays by a crystal in 1912
- Soon after Sir William Bragg and his son William Bragg derived Bragg's law and carried out a series of experiments involving x-ray diffraction from crystals

X-Ray Diffraction (2)

- Let's assume that we have a cubic crystal as shown

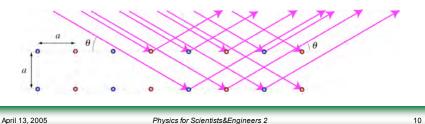
- Each atom in the lattice is a distance *a* away from the next atom in all three directions
- We can imagine various planes of atoms in this crystal

April 13, 2005	Physics for Scientists&Engineers 2

X-Ray Diffraction (4)

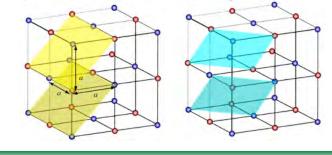
- Interference effects are caused by path length differences
- If we look at x-rays scattering off one plane, all the waves remain in phase
- However, if we consider adjacent planes, we can see below that the path length difference for the scattered x-rays from the two planes is
 - $\Delta x = \Delta x_1 + \Delta x_2 = 2a\sin\theta$
- The criterion for constructive interference is

```
2a\sin\theta = m\lambda \quad (m = 0, 1, 2, ...)
```

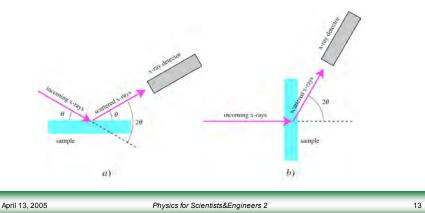


Physics for Scientists&Engineers 2

11

X-Ray Diffraction (3)


- For example, the horizontal planes are composed of atoms spaced a distance a apart with the planes themselves being spaced a distance a from each other
- We can imagine x-rays incident on these planes and that the rows of atoms in the crystalline lattice can act like a diffraction grating
- The x-rays can be thought of as scattering from the atoms

X-Ray Diffraction (5)


- Of course when x-rays are incident on a crystal, there can be several different planes that can function as diffraction gratings
- Some examples are illustrated below
- These planes will not have the spacing a between the planes

X-Ray Diffraction (6)

 To study the atomic structure of a substance using x-ray diffraction one can scatter x-rays parallel to the surface of a sample as shown below in a) or one can transmit the x-rays through the sample and detect the x-rays on the opposite side of the sample and shown in b)

X-Ray Diffraction (7)

14

- For the parallel scattering method, the angle of incidence θ should equal the angle of observation
- For the transmission method, the observed angle is twice the Bragg angle $\boldsymbol{\theta}$
- By measuring the intensity of the x-rays as a function of θ one can determine details of the structure of the material being studied
- Modern particle accelerators such as the National Synchrotron Light Source at Brookhaven National Laboratory are used to produce high quality, intense beams of x-rays to carry out material science research