Review

Physics for Scientists \& Engineers 2

Spring Semester 2005

Lecture 46

Review (2)

- With diffraction effects the intensity of the interference pattern from double slits is given by

$$
I=I_{\max } \cos ^{2} \beta\left(\frac{\sin \alpha}{\alpha}\right)^{2} \quad \alpha=\frac{\pi a}{\lambda} \sin \theta \quad \beta=\frac{\pi d}{\lambda} \sin \theta
$$

- If the screen is placed a sufficiently large distance from the slits then we can write

- The criterion for being able to separate two point objects is called Rayleigh's Criterion and is expressed as

$$
\theta_{R}=\sin ^{-1}\left(\frac{1.22 \lambda}{d}\right)
$$

Barely Resolved
Not Resolved
Resolved Physics for Scientists\&Engineers 2

Review (3)

- A diffraction grating has a large number of slits, or rulings, placed very close together
- To produce bright lines or constructive interference this path length difference must be an integer multiple of the wavelength so

$$
d \sin \theta=m \lambda \quad(m=0,1,2, \ldots)
$$

- The values of m correspond to different bright lines
- The dispersion describes the ability of a diffraction grating to spread apart the various orders

$$
D=\frac{\Delta \theta}{\Delta \lambda}=\frac{m}{d \cos \theta} \quad(m=1,2,3, \ldots)
$$

Resolving Power of a Grating

- The resolving power R of a diffraction grating describes the ability of the diffraction grating to resolve closely spaced maxima, which depends on the width of each maximum
- We define the power of a diffraction grating to resolve two wavelengths, λ_{1} and λ_{2}, as

$$
R=\frac{\lambda_{\text {ave }}}{\Delta \lambda} \quad \lambda_{\text {ave }}=\left(\lambda_{1}+\lambda_{2}\right) / 2 \quad \Delta \lambda=\left|\lambda_{2}-\lambda_{1}\right|
$$

- Thus to discuss the resolving power, we need an expression for the width of each maximum
- The width of each maximum is defined by the position of the first minimum on each side of the maximum
- We can then define the half-width $\theta_{h w}$ of the
 maximum as the angle between the maximum and the first minimum

Resolving Power of a Grating (3)

- We can substitute $\theta_{h w}$ for $\Delta \theta$

$$
\frac{\Delta \theta}{\Delta \lambda}=\frac{\lambda}{N d \cos \theta \Delta \lambda}=\frac{m}{d \cos \theta}
$$

- Which gives us

$$
R=\frac{\lambda}{\Delta \lambda}=N m \quad \lambda \approx(\lambda+(\lambda+\Delta \lambda)) / 2
$$

- Note that the resolving power of a diffraction grating depends on the total number of rulings and the order

Resolving Power of a Grating (2)

- We base our argument our analysis of single slit diffraction using the whole grating as the single slit as shown
- The angle of the first minimum for single slit diffraction can be obtained where we substitute $N d$ for the slit width a

$$
N d \sin \theta_{h w}=\lambda
$$

- Because $\theta_{h w}$ is small, we can write

$$
\theta_{h w}=\frac{\lambda}{N d}
$$

- One can show that the width of the maxima for other orders is

$$
\theta_{h w}=\frac{\lambda}{N d \cos \theta}
$$

- θ is the angle corresponding to the maximum intensity for that order

```
April 13, 2005
```


X-Ray Diffraction

- Wilhelm Röntgen discovered x-rays in the late 1800's
- These experiments suggested that x-rays were electromagnetic waves with a wavelength of about $10^{-10} \mathrm{~m}$
- At about the same time, the study of crystalline solids suggested that the atoms of those solids were arranged in a regular repeating pattern with a spacing of about $10^{-10} \mathrm{~m}$ between the atoms
- Putting these two ideas together, Max von Laue proposed in the early 1900's that a crystal could serve as a three dimensional diffraction grating for x-rays
- Von Laue and Friederich Knipping did the first x-ray diffraction experiment that showed diffraction of x-rays by a crystal in 1912
- Soon after Sir William Bragg and his son William Bragg derived Bragg's law and carried out a series of experiments involving x-ray diffraction from crystals

X-Ray Diffraction (2)

- Let's assume that we have a cubic crystal as shown

- Each atom in the lattice is a distance a away from the next atom in all three directions
- We can imagine various planes of atoms in this crystal

April 13, 2005

$$
\text { Physics for Scientists\&Engineers } 2
$$

9

X-Ray Diffraction (3)

- For example, the horizontal planes are composed of atoms spaced a distance a apart with the planes themselves being spaced a distance a from each other
- We can imagine x-rays incident on these planes and that the rows of atoms in the crystalline lattice can act like a diffraction grating
- The x-rays can be thought of as scattering from the atoms

[^0] 10

X-Ray Diffraction (5)

- Of course when x-rays are incident on a crystal, there can be several different planes that can function as diffraction gratings
- Some examples are illustrated below
- These planes will not have the spacing a between the planes

X-Ray Diffraction (6)

- To study the atomic structure of a substance using x-ray diffraction one can scatter x-rays parallel to the surface of a sample as shown below in a) or one can transmit the x-rays through the sample and detect the x-rays on the opposite side of the sample and shown in b)

X-Ray Diffraction (7)

- For the parallel scattering method, the angle of incidence θ should equal the angle of observation
- For the transmission method, the observed angle is twice the Bragg angle θ
- By measuring the intensity of the x-rays as a function of θ one can determine details of the structure of the material being studied
- Modern particle accelerators such as the National Synchrotron Light Source at Brookhaven National Laboratory are used to produce high quality, intense beams of x-rays to carry out material science research

[^0]: April 13, 2005 Physics for Scientists\&Engineers 2

