

Beta and Gamma

- It is convenient to express speeds as a fraction of the speed of light.
- Introduce a variable beta as the ratio of the speed to the speed of light

$$
\beta=\frac{v}{c}
$$

- Another useful variable that depends on the speed and the speed of light

$$
\gamma=\frac{1}{\sqrt{1-\beta^{2}}}=\frac{1}{\sqrt{1-(v / c)^{2}}}
$$

Einstein's Postulates

- Postulate 1:
- The laws of physics are the same in each reference frame, independent of the motion of this reference frame.
- Postulate 2:
- The speed of light, c, is the same in every reference frame.

April $12,2005 \quad$ Physiscs tor ScientistseEngineers 2

Time Dilation

- Conventionally, we think of time as flowing at a uniform rate in one direction (past to the future)
- But if you accept that the speed of light is the same in any reference frame, then our old understanding of time runs into conceptual problems
- The time interval it takes for an event to happen as observed in a moving rest frame is dilated (= made bigger) as compared to the time interval for the event to occur in the frame where it is at rest

Time Dilation (2)

- Let's start with two parallel mirrors, distance h, and send a light beam from one to the other
- This takes a time
$\Delta t_{0}=\frac{h}{c}$

- Now observe the same event while moving with speed v

April 11, 2005 Physis for Scientists\&EEngineers 2

Time Dilation (4)

- Put this together

$$
L=\sqrt{h^{2}+x^{2}} \Rightarrow c \Delta t=\sqrt{\left(c \Delta t_{0}\right)^{2}+(v \Delta t)^{2}}
$$

- Solve for the time interval in the moving frame:

Time Dilation (3)

- Now the mirrors are moving a distance $x=v \Delta t$ in horizontal direction.
- Light beam has covered a distance (Pythagoras!)

$$
L=\sqrt{h^{2}+x^{2}}
$$

- Light moves with $c: L=c \Delta t$

April 21, 2005
Physics for ScientiststsEngineers 2

Time Dilation (5)

- Once more, in words:

The rate at which time flows is dependent on how fast the observer moves!

- Note: this is not just the subjective perception of time, but the objective measurable length of time!

$$
\Delta t=\frac{\Delta t_{0}}{\sqrt{1-(v / c)^{2}}}=\gamma \Delta t_{0}
$$

Simply the most astonishing formula derived in the entire course up to now!

April 21,2005
Physics for Scientists \&Engineers 2

Example: Time Dilation

- Muon Decay

- Muons have a lifetime of 2.2 micro-seconds
- CERN experiment: muons produced with $\beta=0.9994$

$$
\gamma=\frac{1}{\sqrt{1-\beta^{2}}}=\frac{1}{\sqrt{1-0.9994^{2}}}=28.87
$$

- Lifetime of these moving muons should be 28.87 times longer, $=63.5$ micro-secs, than those at rest.
- During this time, the muons can move a distance

$$
x=v \tau=v \gamma \tau_{0}=0.9994 c \cdot 28.87 \cdot 2.200 \mu \mathrm{~s}=19 \mathrm{~km}
$$

- Without time dilation, this distance would only be 660 m
- => Direct observation of time dilation!

April 21, 2005
Physics for Scientists\&Engineers 2

Twin Paradox:

- Twin sisters Alice (astronaut) and Betty (stays home), both age 20

Alice takes a space trip with $\gamma=10$

- Alice flies to a nearby star and back
- (Note the direction of the velocity vector does not matter!)
- Alice flies for 5 years and is 25 when she returns home to Earth
- But in the meantime Betty has aged $5 \gamma=50$ years and is now 70 when her sister returns!
- But wait a minute! We can also put ourselves into Alice's rest frame, and in this frame Betty (and the entire Earth) has moved with $\gamma=10$, and so Alice would expect to be 25 on her return, but her sister should only be 20.5 years old.
- Big difference! ... in particular for Betty ...
- Which answer is correct?

Length Contraction

- If you want to measure the length of a spaceship at rest, you can use a laser and measure the time it takes to move the length of the spaceship

$$
L_{0}=c \Delta t_{0}
$$

- Now we redo the same experiment with the shuttle and the clock to measure the time inside it are moving by at speed v.
This time the measurement then yields:

$$
L=\frac{c \Delta t_{0}}{\gamma}=\frac{L_{0}}{\gamma}
$$

- Length contraction by a factor γ !
- Note: length only changes in the direction of motion, not perpendicular

Twin Paradox = Solution

- Alice is not really in an inertial frame, because she has to accelerate and slow down
- True, but also not relevant
- We can restrict the speeding up and slowing down phases to a very small fraction of the trip; so they will not change the answer
- Consider that the two endpoints of the trip are given in the coordinate frame of Earth, and that they are fixed: Earth on one end and a star 25 light-years away at the other end.
- In Alice's traveling frame that distance appears length contracted by a factor of 10 , which is why she is able to make the roundtrip in 5 years.
- Consequently Betty is 70 and Alice 25 years old when they meet again.

Frequency Shift

- Time dilation modifies all other observables that are related to time.
- Example: frequency
- Relativistic frequency shift acts similarly to Doppler Effect, but has origin in time dilation, not in movement of the wave medium relative to observer or source

$$
f=f_{0} \sqrt{\frac{c \mp v}{c \pm v}}
$$

- Upper signs for observer and emitted moving away from each other, lower for moving toward each other

April 11, 2005
Physics for Scientists \&Engineers 2

Wavelength Shift

- Since $c=\lambda f$, a shift in the frequency is also a shift in wavelength
- Observed wavelength

$$
\lambda=\lambda_{0} \sqrt{\frac{c \pm v}{c \mp v}}
$$

(again, upper signs for moving away from each other, lower for towards each other)

- Red-shifted: object moves away from us
- Blue-shift: object moves towards us

April 21, $2005 \quad$ Physics for Scientists\&Engineers 2

Relativistic Velocity Addition

- Galiean: $v_{1+2}=v_{1}+v_{2}$
- Relativistic addition (without derivation):

$$
v_{1+2}=\frac{v_{1}+v_{2}}{1+\frac{v_{1} v_{2}}{c^{2}}}
$$

- Earlier example c "plus" $c / 2: \quad v_{c+c / 2}=\frac{c+c / 2}{1+\frac{c \cdot c / 2}{c^{2}}}=c$
- For speed small compared to c, we can neglect $v_{1} v_{2} / c^{2}$ compared to 1 , and we get back our Galiean result.

April 21, $2005 \quad$ Physics for ScientistssEngineers 2

Momentum and Force

- Newton's 2nd Law in old form,

$$
\vec{F}=m \vec{a}=m d \vec{v} / d t
$$

is not correct any more in the relativistic limit - But the form

$$
\vec{F}=\frac{d}{d d} \vec{p}
$$

is still valid

