

Kinetic Energy

- Non-relativistic $\quad K=\frac{1}{2} m v^{2}$
- Relativistic: need to consider the contribution of the mass to the energy
- Energy contained in the mass of a particle

$$
E_{0}=m c^{2}
$$

- This is the energy that a particle has when it is at rest: sometimes also called "rest energy"
- When a particle is in motion, then its energy increases, just like the time becomes dilated:

$$
E=\gamma E_{0}=\gamma m c^{2}
$$

April 26, 2005 Physics for Scientists\&Engineers 2

Kinetic Energy (2)

- From the energy, we can obtain the kinetic energy by subtraction of the rest energy:

$$
K=E-E_{0}=(\gamma-1) E_{0}=(\gamma-1) m c^{2}
$$

- Non-relativistic limit ($\mathrm{v} \ll \mathrm{c}$):

$$
\begin{aligned}
& \left(1-x^{2}\right)^{-1 / 2}=1+\frac{1}{2} x^{2}+\frac{3}{8} x^{4}+\ldots \\
& \gamma=1+\frac{1}{2} \beta^{2}=1+\frac{1}{2} v^{2} / c^{2} \\
& K=(\gamma-1) m c^{2} \\
& =\left(\left(1+\frac{1}{2} v^{2} / c^{2}\right)-1\right) m c^{2} \\
& =\frac{1}{2} m v^{2}
\end{aligned}
$$

April $26,2005 \quad$ Physics for Scientists\&Engineers 2

Momentum and Energy (2)

- Finally we take square root

$$
E=\sqrt{p^{2} c^{2}+m^{2} c^{4}}
$$

- Negative root: antimatter (Dirac)
- Case of zero mass (photons):

$$
E=p c
$$

April 26, 2005
Physics for Scientists\&Engineers 2

Speed, Energy \& Momentum

- Divide momentum by energy

$$
\frac{p}{E}=\frac{\gamma m v}{\gamma m c^{2}}=\frac{v}{c^{2}} \Rightarrow v=\frac{p c^{2}}{E}
$$

- So we can express beta-factor as:

$$
\beta=\frac{v}{c}=\frac{p c}{E}
$$

- This gives us an additional energy-momentum relationship:

$$
\beta=\frac{p c}{E} \Rightarrow p=\frac{\beta E}{c} \text { or } \left.E=\frac{p c}{\beta} \right\rvert\,
$$

April 26, 2005 Physics for Scientists\&Engineers 2

Example: Energy\&Momentum (2)

Answer: (cont.)

- Kinetic energy of electron in this case:

$$
K=(\gamma-1) E_{0}=6.09 \cdot 0.511 \mathrm{MeV}=3.11 \mathrm{MeV}
$$

- Momentum: $p=\frac{\beta E}{c}=\frac{0.99 \cdot 3.62 \mathrm{MeV}}{c}=3.58 \mathrm{MeV} / c$
- An accelerator to achieve this is quite small and inexpensive; but in the last 1% is where it gets big and expensive
- At SLAC, the speed reached by electrons is 99.9999999% of the speed of light, and it takes an accelerator of length 3 km to accomplish this.

Example: Energy\&Momentum

Question:

- If an electron has a speed of 99% of that of light, what is its total energy, what is its kinetic energy, and what is its momentum?

Answer:

- Rest energy of electron $E_{0}=5.11 \cdot 10^{5} \mathrm{eV}=0.511 \mathrm{MeV}$
- Rest mass $m=0.511 \mathrm{MeV} / c^{2}$
(remember $1 \mathrm{eV}=1.609 \cdot 10^{-19} \mathrm{~J}$)
- Gamma for 99% of c :

$$
\gamma=\frac{1}{\sqrt{1-\beta^{2}}}=\frac{1}{\sqrt{1-0.99^{2}}}=7.09
$$

- Total energy: $E=\gamma E_{0}=7.09 \cdot 0.511 \mathrm{MeV}=3.62 \mathrm{MeV}$

April $26,2005 \quad$ Physics for Scientists\&Engineers 2

Mass and Gravity

- Newtonian theory of gravity

$$
m a=F_{g}=\frac{G m M}{r^{2}}
$$

- Mass, m, appears on both sides of this equation
- Right side: source of the interaction (gravitational mass)
- Left side: mass undergoing acceleration (inertial mass)
- Experimental finding: gravitational mass = inertial mass
- Newtonian gravity works extremely well, except near very large masses
- Example: Small deviations from observed orbit of Mercury

April 26, 2005	Physics for Scientists \&Engineers 2	13

Curved Space

- Two-dimensional example: Imagine a flat rubber sheet, suspended at the edges. Put a bowling ball on it: local deformation

Equivalence Principle

- Einstein (1907): "If a person falls freely he will not feel his own weight."
- Consequence: you cannot distinguish if you are in an accelerating reference frame, or if you are subject to the gravitational force.
- Equivalence Principle: "All local freely falling nonrotating laboratories are fully equivalent for the performance of all physical experiments"
- Space and time are locally curved due to the presence of masses

April 26, $2005 \quad$ Physics for ScientistssEngineers 2

Curved Space (2))

- Now put two objects on the rubber sheet
- Objects are attracted to each other and move towards each other $\Rightarrow>$ Gravitational interaction

Curved Space (3)

- Objects do not move on Euclidean straight lines, but on lines that correspond to the shortest distance in curved space time
- Even though light does not have mass, it also moves on the shortest path through curved space-time
- => Light gets deflected (slightly) near large masses
- Spectacular confirmation of theory of general relativity during solar eclipse in 1919
- Angular deflection of $1.75^{\prime \prime}$ predicted and observed
- "Gravitational lensing"

Gravitational Lensing

GPS = Relativity Works!

- GPS-system consists of 24 satellites with atomic clocks on board
- Typically, a receiver gets timing signals from at least 4 satellites simultaneously
- From the timing of the signals, receiver can determine its position

$$
\left|\vec{r}_{r}-\vec{r}_{i}\right|=c \cdot\left|t_{r}-t_{i}\right| \text { for } i=1, \ldots, 4
$$

- Time dilation effects need to be corrected for, because satellites move with $4 \mathrm{~km} / \mathrm{s}$ rel. to Earth.

