Ideal Gases

Experimental results on gases:
Boyle's Law
$\overline{P V}=$ constant (fixed amount of gas, constant T)

Charles' Law
V/T = constant (fixed amount of gas, constant P)
(T is in Kelvins)
Combining these two laws:

THE IDEAL GAS LAW

$$
P V=n R T
$$

where n is the number of moles of gas and R is the gas constant,

$$
\mathrm{R}=8.31 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{~K})
$$

Alternate form:

$$
P V=N k T
$$

where N is the number of molecules in the gas
and k is the Boltzmann's constant,

$$
k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}
$$

(Comparing the two forms gives $R=N_{A} k$.)

All real gases approach the "ideal gas" in the limit of very low density.

Work done at constant T
 (ideal gas)

Isothermal expansion:

$$
P V=n R T=\text { constant }
$$

v

- Isotherm: a curve along which T is constant.

Work done by gas: $\square W=\int_{i}^{f} P d V$
$\square W=\int_{i}^{f}(n R T / V) d V=n R T \ln \left(V_{f} / V_{i}\right)$

Note: if $V_{f}>V_{i}$ (expansion), then $\square W$ is + if $V_{f}<V_{i}$ (compression), then $\square W$ is -

Work done in other processes
 $$
\square W=\int_{i}^{f} P d V
$$

Constant Volume:
$\square W=0$

Constant Pressure:
$\square W=P\left(V_{f}-V_{i}\right)$

Kinetic Theory of Gases

Consider N molecules (n moles with $n=N / N_{A}$) in a cubical box of side L, i.e. Volume $=L^{3}$.

Change in momentum at the x-wall is
$\square p_{x}=2 m v_{x}$

Average rate of change of momentum in x-direction:
$\square p_{x} / \square t=\left(2 m v_{x}\right) /\left(2 L / v_{x}\right)=m v_{x}{ }^{2} / L$
This is force exerted by the molecule.

$$
\begin{aligned}
\text { Total Force } & =\sum_{i=1}^{N}\left(m v_{x}^{2}\right)_{i} / L \\
\text { Pressure } P & =\text { Force } / \text { Area }=F / L^{2} \\
& =\left(m / L^{3}\right) \sum\left(v_{x}^{2}\right)_{i}
\end{aligned}
$$

$$
P=\left(m / L^{3}\right) N\left\langle v_{x}^{2}\right\rangle_{\infty} \text { average }
$$

$m N=n M$ is the total mass.
where $n=\#$ of moles
$M=$ molar mass

$$
P=(n M / V)\left\langle v_{x}^{2}\right\rangle
$$

For any molecule: $\quad v^{2}=v_{x}{ }^{2}+v_{y}{ }^{2}+v_{z}{ }^{2}$
$\square\left\langle v_{x}{ }^{2}\right\rangle=(1 / 3)\left\langle v^{2}\right\rangle$
$\square \quad P=(n M / 3 V)\left\langle v^{2}\right\rangle$
Define root-mean-square speed $v_{r m s}$:

$$
v_{r m s}=\sqrt{\left\langle v^{2}\right\rangle}
$$

- $\quad P V=(n M / 3) v^{2}{ }_{r m s}$

From ideal gas law: $\quad P V=n R T$
$\square \quad(n M / 3) v_{r m s}=n R T$
$\square \mathrm{v}_{\mathrm{rms}}=\sqrt{3 R T / M}$
microscopic $v_{r m s} \square$ macroscopic T

Kinetic Energy

Average (translational) kinetic energy per molecule

$=(1 / 2) m\left\langle v^{2}\right\rangle=(1 / 2) m(3 R T / M)$
Using $\quad M / m=N_{A}$,
$\langle K\rangle=3 R T /\left(2 N_{A}\right)=(3 / 2) k T$

$$
\langle K\rangle=(3 / 2) k T
$$

A measurement of the Temperature of a gas is equivalent to a measure of the average kinetic energy of its molecules.

Molecular Speeds at Room Temp ($\mathrm{T}=300 \mathrm{~K}$)

Gas \quad molar mass $(\mathrm{g}) \quad \mathrm{V}_{\text {rms }}(\mathrm{m} / \mathrm{s})$

Table 20.1

Maxwell's Speed Distribution

The distribution of molecular speeds was first written down by Maxwell (1852):

$$
P(v)=4 \overbrace{-\square R T} \frac{M}{\beta^{3} / 2} v^{2} e^{\square \frac{M v^{2}}{2 R T}}
$$

$P(v) d v$ is the probability that a molecule has speed between v and $v+d v$.
It is normalized to 1. $\int_{0} P(v) d v=1$.

Average speed:

$$
\langle v\rangle=\int_{0} v P(v) d v=\sqrt{8 R T /(\square M)}
$$

Root-mean-square speed:
$\left\langle\mathrm{v}^{2}\right\rangle=\mathrm{v}^{2}{ }_{r m s}=\int_{0} \mathrm{v}^{2} \mathrm{P}(\mathrm{v}) \mathrm{dv}=3 R T / M$

Most probable speed (maximum of distribution curve):

$$
v_{p}=\sqrt{2 R T / M}
$$

Internal Energy

(due only to kinetic energy of atoms)

- Monatomic gas - Single atoms:

$$
U=N(3 / 2) k T=(3 / 2) n N_{A} k T=(3 / 2) n R T
$$

Each atom has 3 Degrees of Freedom.
(K. E. in x, y, or z directions).

- Diatomic molecule: Rotates (in two planes)
- 5 degrees of freedom.

$$
U=(5 / 2) n R T
$$

- Polyatomic molecule:

Rotates in all 3 planes

- 6 degrees of freedom.
(3 translational + 3 rotational).
$U=(6 / 2) n R T=3 n R T$
"Equipartion of Energy"

Molar Specific Heats
 (of ideal gas)

Recall: Specific heat tells how T changes as Q is added.

This depends on the conditions: Constant V or Constant P.

Constant Volume: $\square Q=n C_{V} \square T$ where C_{V} is specific heat at constant V.
$1^{\text {st }}$ Law of TD: $\square Q=\square U+\square W$
At constant V, $\mathrm{DW}=0$.
$\square \quad \square Q=\square U=(3 / 2) n R \square T$ (monatomic gas)
Comparing with definition of C_{V} gives:

$$
C_{V}=(3 / 2) R=12.5 \mathrm{~J} /\left(\mathrm{mol}^{\circ} \mathrm{K}\right)
$$

Constant Pressure: $\square Q=n C_{p} \square T$ where C_{P} is specific heat at constant P.
$1^{\text {st }}$ Law of TD: $\square Q=\square U+\square W$
At constant $P, \square W=P \square V$.
Ideal gas law: $P \square V=n R \square T$
$\square \quad \square Q=(3 / 2) n R \square T+n R \square T=(5 / 2) n R \square T$
(-) $C_{P}=(5 / 2) R$ (again, for monatomic gas)
In General:

$$
C_{P}=C_{V}+R
$$

Quantum Mechanics and

Equipartition of Energy

Quantum Theory predicts:
rotational energies are quantized (only have certain discrete values).

- Rotational degrees of freedom only
"turn on" above some minimum temperature (roughly when kT
is larger than the lowest rotational energy level of the molecule).
(Fig. 20-12 of HRW)

