## Scott Pratt



In this graph of displacement versus time，what is the average velocity in going from point A to point H in $\mathrm{m} / \mathrm{s}$ ？（Assume that the vertical axis is given in meters and that the horizon－ tal axis is given in seconds）
$\mathbf{1 . A} \bigcirc 0.286$
B $\bigcirc 0.323$
$\mathbf{C} \bigcirc 0.365$
D $\bigcirc 0.412$
$\mathbf{E} \bigcirc 0.466$
$\mathbf{F} \bigcirc 0.526$
$\mathbf{G} \bigcirc 0.595$
$\mathbf{H} 0.672$
$1 p t$ After landing，a jet airplane comes to rest uniformly （the acceleration is constant）in 8.5 seconds．The landing speed of the aircraft is $198 \mathrm{~km} /$ hour．How far，in m，does the aircraft roll？
$\mathbf{2 . A} \bigcirc 56.2$
$\mathbf{B} \bigcirc 74.8$
$\mathbf{C} \bigcirc$
99.4
D〇 132.2
E $\bigcirc 175.9$
F〇 233.9
$\mathbf{G} \bigcirc 311.1$
$\mathbf{H} \bigcirc 413.8$

## 1 pt

A drag racer reaches $317 \mathrm{~km} / \mathrm{hr}$ in a 1 km race．Assuming constant acceleration，what was the racer＇s acceleration（in $\mathrm{m} / \mathrm{s}^{2}$ ）during the race？
3．A $\bigcirc 0.932$
$\mathbf{B} 1.239$
$\mathbf{F} \bigcirc 3.877$
$\mathbf{C} \bigcirc 1.648$
D 2.192
E $\bigcirc 2.915$
G $\bigcirc 5.156$
$\mathbf{H} \bigcirc 6.858$
$1 p t$ A snowball is launched horizontally from the top of a rectangular building with an initial velocity of $17 \mathrm{~m} / \mathrm{s}$ ．It lands 40 m from the base of the building．How tall was the building？（in m）
4．A $\bigcirc 12.39$
$\mathrm{B} \bigcirc$
14.49
F〇 27.16
$\mathbf{C} \bigcirc 16.96$
$\mathbf{G} \bigcirc 31.77$
D〇 19.84
E $\bigcirc 23.21$
G○ 31.77
$\mathbf{H} \bigcirc 37.17$
$\qquad$

Scott Pratt－PHY 231 －Spring 2004
$1 p t$ A plane is capable of moving at a speed of $210 \mathrm{~m} / \mathrm{s}$ in still air．It is on course to move due east（relative to the earth）despite a wind of $43 \mathrm{~m} / \mathrm{s}$ which is blowing from the north．What is the velocity of the plane relative to the ground？（in $\mathrm{m} / \mathrm{s}$ ）
$\mathbf{5 . A} \bigcirc 49.4$
$\mathbf{B} \bigcirc 65.7$
$\mathbf{C} \bigcirc 87.4$
D〇 116.2
$\mathbf{E} \bigcirc 154.5$
$\mathbf{F} \bigcirc 205.6$
$\mathbf{G} \bigcirc 273.4$
$\mathbf{H} \bigcirc 363.6$

1 pt Consider a projectile which strikes a target as shown below．Ignore all forces except gravity．Point A refers to a point just beyond the muzzle of the cannon，B refers to the highest point in the trajectory and C refers to a point just before landing on the cliff．

$\triangleright$ The horizontal component of the velocity at $A$ is $\qquad$ than the horizontal component of the velocity at $C$ ．

6． $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than $\mathbf{C} \bigcirc$ equal to
$\triangleright$ The acceleration at $B$ is＿－＿－the acceleration at $C$ ．
7． $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than $\mathbf{C} \bigcirc$ equal to
$\triangleright$ The vertical component of the velocity at $B$ is $\qquad$
8． $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than $\mathbf{C} \bigcirc$ equal to
$\triangleright$ The magnitude of the vertical component of the velocity at $A$ is＿＿－＿the magnitude of the vertical component of the velocity at $C$

9． $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than $\mathbf{C} \bigcirc$ equal to

1 pt A train moves at constant velocity of 60 mph . A cannon is stationed on a flatcar moving with the train. The cannon has a muzzle velocity of 120 mph . If the gunner wishes for the cannon ball to land on top of the cannon, she should: (ignore air resistance)

A Aim the cannon 45 degrees from vertical, pointing backward.

B Aim the cannon straight up.
C Aim the cannon 30 degrees from the vertical, pointing backward.

D Aim the cannon 30 degrees from the vertical, pointing forward.

E Aim the cannon 45 degrees from the vertical, pointing forward.
$\triangleright$

$$
\text { 10. } \mathbf{A} \bigcirc \quad \mathbf{B} \bigcirc \quad \mathbf{C} \bigcirc \quad \mathbf{D} \bigcirc \quad \mathbf{E} \bigcirc
$$



Consider the pulley system above which is holding the mass M in equilibrium. Assume each pulley is massless.
$\triangleright T_{A}+T_{B}$ is $\qquad$ $T_{D}$
11. $\mathbf{A} \bigcirc$ equal to $\mathbf{B} \bigcirc$ greater than $\mathbf{C} \bigcirc$ less than
$\triangleright T_{A}$ is $\qquad$ $T_{B}$.
12. $\mathbf{A} \bigcirc$ equal to $\mathbf{B} \bigcirc$ greater than $\mathbf{C} \bigcirc$ less than
$\triangleright T_{B}$ is $\qquad$ $T_{C}$
13. $\mathbf{A} \bigcirc$ equal to $\mathbf{B} \bigcirc$ greater than $\mathbf{C} \bigcirc$ less than
$\triangleright T_{D}$ is $\qquad$ $M g$
14. $\mathbf{A} \bigcirc$ equal to $\mathbf{B} \bigcirc$ greater than
$\mathbf{C} \bigcirc$ less than


Find the tension in the two wires that supoort the light fixture. $\mathrm{M}=13 \mathrm{~kg}, \theta=39$ degrees. (in N )
15.A $\bigcirc 22.9$
B○ 33.2
$\mathbf{C} \bigcirc 48.2$
$\mathbf{D} 69.9$
E $\bigcirc 101.3$
F〇 146.9
G $\bigcirc 213.0$
$\mathbf{H} 308.9$

1 pt


Assume that the three blocks in the figure move together on a frictionless surface and that a $\mathrm{T}=35 \mathrm{~N}$ force acts as shown on the $3.0-\mathrm{kg}$ block. What is the tension in the cord connecting the $3.0-\mathrm{kg}$ and the $1.0-\mathrm{kg}$ blocks? (in N )

| $\mathbf{1 6 . A} \bigcirc 17.50$ | $\mathbf{B} \bigcirc 20.47$ | $\mathbf{C} \bigcirc 23.96$ | $\mathbf{D} \bigcirc 28.03$ |
| ---: | :--- | :--- | :--- | :--- |
| $\mathbf{E} \bigcirc 32.79$ | $\mathbf{F} \bigcirc 38.37$ | $\mathbf{G} \bigcirc 44.89$ | $\mathbf{H} \bigcirc 52.52$ |


© 2002 Brooss Cole Putlishing-a divisior of Tho msen Leanaing
Consider the figure above, with $\mathrm{M}_{1}=105 \mathrm{~kg}$ and $\mathrm{M}_{2}=44.1 \mathrm{~kg}$. What is the minimum static coefficient of friction necessary to keep the block from slipping?
17.A $\bigcirc 0.0759$
$\mathbf{B} \bigcirc 0.1009$
$\mathbf{C} \bigcirc 0.1342$
D 0.1785
$\mathbf{E} 0.2374$
$\mathbf{F} \bigcirc 0.3158$
G $\bigcirc 0.4200$
$\mathbf{H} \bigcirc 0.5586$

