

In this graph of displacement versus time, what is the average velocity in going from point A to point H in m/s? (Assume that the vertical axis is given in meters and that the horizon-tal axis is given in seconds)

$1.A \bigcirc 0.286$	$\mathbf{B}\bigcirc 0.323$	$\mathbf{C}\bigcirc~0.365$	$\mathbf{D}\bigcirc 0.412$
\mathbf{E} 0.466	$\mathbf{F}\bigcirc 0.526$	$\mathbf{G}\bigcirc~0.595$	$\mathbf{H}\bigcirc 0.672$

1 pt After landing, a jet airplane comes to rest uniformly (the acceleration is constant) in 8.5 seconds. The landing speed of the aircraft is 198 km/hour. How far, in m, does the aircraft roll?

2. A 56.2	\mathbf{B} 74.8	$\mathbf{C}\bigcirc 99.4$	\mathbf{D} 132.2
E 175.9	F 〇 233.9	$\mathbf{G}\bigcirc~311.1$	$\mathbf{H}\bigcirc$ 413.8

 $1 \ pt$

A drag racer reaches 317 km/hr in a 1 km race. Assuming constant acceleration, what was the racer's acceleration (in m/s^2) during the race?

3.A \bigcirc 0.932	B \bigcirc 1.239	\mathbf{C} 1.648	$D\bigcirc 2.192$
\mathbf{E} 2.915	\mathbf{F} 3.877	$\mathbf{G}\bigcirc~5.156$	$H\bigcirc 6.858$

1 pt A snowball is launched horizontally from the top of a rectangular building with an initial velocity of 17 m/s. It lands 40 m from the base of the building. How tall was the building? (*in* m)

4.A 12.39	\mathbf{B} 14.49	\mathbf{C} 16.96	$\mathbf{D}\bigcirc$ 19.84
E () 23.21	\mathbf{F} 27.16	$\mathbf{G}\bigcirc~31.77$	$\mathbf{H}\bigcirc~37.17$

1 pt A plane is capable of moving at a speed of 210 m/s in still air. It is on course to move due east (relative to the earth) despite a wind of 43 m/s which is blowing from the north. What is the velocity of the plane relative to the ground? (in m/s)

``	/		
5.A 〇 49.4	$\mathbf{B}\bigcirc 65.7$	$\mathbf{C}\bigcirc~87.4$	\mathbf{D} 116.2
\mathbf{E} 154.5	\mathbf{F} 205.6	$\mathbf{G}\bigcirc~273.4$	$\mathbf{H}\bigcirc$ 363.6

1 pt Consider a projectile which strikes a target as shown below. Ignore all forces except gravity. Point A refers to a point just beyond the muzzle of the cannon, B refers to the highest point in the trajectory and C refers to a point just before landing on the cliff.

- \triangleright The horizontal component of the velocity at A is ____ than the horizontal component of the velocity at C.
- \triangleright The acceleration at B is ____ the acceleration at C.
 - 7. A greater than B less than C equal to
- ▷ The vertical component of the velocity at B is ____ zero.
 8. A greater than B less than C equal to

 \triangleright The magnitude of the vertical component of the velocity at A is _____ the magnitude of the vertical component of the velocity at C

1 pt A train moves at constant velocity of 60 mph. A cannon is stationed on a flatcar moving with the train. The cannon has a muzzle velocity of 120 mph. If the gunner wishes for the cannon ball to land on top of the cannon, she should: (ignore air resistance)

A Aim the cannon 45 degrees from vertical, pointing backward.

B Aim the cannon straight up.

C Aim the cannon 30 degrees from the vertical, pointing backward.

D Aim the cannon 30 degrees from the vertical, pointing forward.

 ${\bf E}\,$ Aim the cannon 45 degrees from the vertical, pointing forward.

Consider the pulley system above which is holding the mass M in equilibrium. Assume each pulley is massless.

 $\begin{array}{c|c} \triangleright \ T_A + T_B \ \text{is} \ \underline{} \\ \textbf{11.} \ \ \textbf{A} \bigcirc \ \text{equal to} \ \ \textbf{B} \bigcirc \ \text{greater than} \\ \textbf{C} \bigcirc \ \text{less than} \end{array}$

- $T_A \text{ is } T_B.$ **12.** A equal to B greater than C less than
- $\begin{array}{c} \triangleright \ T_B \ \text{is} \underbrace{\qquad} T_C \\ \mathbf{13.} \ \mathbf{A} \bigcirc \ \text{equal to} \ \mathbf{B} \bigcirc \ \text{greater than} \\ \mathbf{C} \bigcirc \ \text{less than} \end{array}$

 $\begin{array}{c|c} \triangleright \ T_D \ \text{is} & \underline{\qquad} & Mg \\ \textbf{14.} \quad \textbf{A} \bigcirc \ \text{equal to} \quad \textbf{B} \bigcirc \ \text{greater than} \\ \textbf{C} \bigcirc \ \text{less than} \end{array}$

Find the tension in the two wires that support the light fixture. M=13 kg, θ =39 degrees. (in N)

15.A 〇 22.9	B () 33.2	$\mathbf{C}\bigcirc$ 48.2	$\mathbf{D}\bigcirc 69.9$
E 101.3	F 146.9	\mathbf{G} 213.0	H 308.9

Assume that the three blocks in the figure move together on a frictionless surface and that a T=35 N force acts as shown on the 3.0-kg block. What is the tension in the cord connecting the 3.0-kg and the 1.0-kg blocks? (in N)

16.A 〇 17.50	\mathbf{B} 20.47	$\mathbf{C}\bigcirc~23.96$	\mathbf{D} 28.03
E 32.79	\mathbf{F} 38.37	\mathbf{G} 44.89	$H\bigcirc 52.52$

Consider the figure above, with $M_1=105$ kg and $M_2=44.1$ kg. What is the minimum static coefficient of friction necessary to keep the block from slipping?

17.A 0.0759	B 〇 0.1009	$\mathbf{C}\bigcirc 0.1342$
$\mathbf{D}\bigcirc~0.1785$	\mathbf{E} 0.2374	\mathbf{F} 0.3158
$\mathbf{G}\bigcirc 0.4200$	$\mathbf{H}\bigcirc~0.5586$	

Printed from LON-CAPA MSU

3