Scott Pratt－PHY 231 －Spring 2004

1 pt A drunk driver strikes a parked car．During the colli－ sion the cars become entangled and skip to a stop together． Each car has a total mass of 910 kg ．If the cars slide 16.5 m before coming to rest，how fast was the drunk driver going？ The coefficient of sliding friction between the tires and the road is 0.35 ．（in m / s ）
1．A $\bigcirc 2.892$
B○ 3.846
C〇 5.116 D 6.804
E〇 9.049
F〇 12.035
G $\bigcirc 16.007$
$\mathbf{H} \quad 21.289$
$1 p t$ A baseball has a mass of about 0.17 kg ，and it is pitched towards home plate at a speed of about $37 \mathrm{~m} / \mathrm{s}$ ．If the bat exerts an average force of 7300 N for 1.9 ms ，what is the final speed of the ball in m / s ？（in m / s ）
$\mathbf{2 . A} \bigcirc 25.21$
$\mathbf{B} \bigcirc 33.52$
$\mathbf{C} \bigcirc 44.59$
D $\bigcirc 59.30$
$\mathbf{E} \bigcirc 78.87$
F〇 104.90
$\mathbf{G} \bigcirc 139.52$
$\mathbf{H} \bigcirc 185.56$

Consider the graph of force，F，vs．position，x，shown above． The hashmark on the vertical axis denotes a value $\mathrm{F}_{0}=30 \mathrm{~N}$ ． Find the velocity of a $7.7-\mathrm{kg}$ object as it moves from $\mathrm{x}=0.0$ to $\mathrm{x}=15.0 \mathrm{~m}$ after starting at rest．（in m / s ）
3．A $\bigcirc 2.82$
$\mathbf{B} \bigcirc 3.75$
$\mathbf{C} \bigcirc 4.99$
$\mathbf{D} \bigcirc 6.64$
$\mathbf{E} \bigcirc 8.83$
$\mathbf{F} \bigcirc 11.74$
$\mathbf{G} \bigcirc 15.61$
$\mathbf{H} \bigcirc 20.77$

1 pt The launching mechanism of a toy gun consists of a spring whose spring constant is $6942 \mathrm{~N} / \mathrm{m}$ ．The spring is compressed a distance 3.1 cm before launching．What is the maximum height to which the gun can launch a $20-\mathrm{g}$ projec－ tile？（in m）
4．A $\bigcirc 13.31$
B〇 15.04
$\mathbf{C} \bigcirc 17.00$
D 19.21 $\mathbf{E} \bigcirc 21.71$
$\mathbf{F} \bigcirc 24.53$
$\mathbf{G} \bigcirc 27.72$
$\mathbf{H} 31.32$

$1 p t$
Some asteroid named＂Briggie＂has been discovered

$\mathbf{5 . A} 3.95 \times 10^{10}$
B $\bigcirc 5.25 \times 10^{10}$
$\mathbf{C} \bigcirc 6.99 \times 10^{10}$
D 9.30×10^{10}
E 1.24×10^{11}
$\mathbf{F} \bigcirc 1.64 \times 10^{11}$
G $\bigcirc 2.19 \times 10^{11}$
$\mathbf{H} \bigcirc 2.91 \times 10^{11}$

Scott Pratt－PHY 231 －Spring 2004
$1 p t$ A train has a speed of $\mathrm{V}=90.1 \mathrm{~km} / \mathrm{h}$ ．If the accel－ eration experienced by the passengers is to be less than 0.45 g ，find the smallest radius of curvature R acceptable for the track．DATA： $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$（in m）
6．A $\bigcirc 103.7$
B $\bigcirc 121.3$
$\mathbf{C} \bigcirc 141.9$
D〇 166.0
$\mathbf{E} \bigcirc 194.2 \quad \mathbf{F} \bigcirc 227.3 \quad \mathbf{G} \bigcirc 265.9 \quad \mathbf{H} \bigcirc 311.1$

1 pt The diameter of the main rotor of a single－engine heli－ copter is 13.8 m ．The rotational speed is $430 \mathrm{rev} / \mathrm{min}$ ．What is the speed of the tip of the large rotor？Give answer as a fraction of the speed of sound，$v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}$ ．
7．A 0.12
$\mathbf{B} \bigcirc 0.16$
$\mathbf{C} \bigcirc 0.22$
$\mathbf{D} \bigcirc 0.29$
$\mathbf{E} \bigcirc 0.39$
$\mathbf{F} \bigcirc 0.51$
$\mathbf{G} \bigcirc 0.68$
$\mathbf{H} \bigcirc 0.91$
$1 p t$ Consider twins named Bert and Ernie who are visiting a planet named Izzone．Bert is standing at the top of the highest mountain on Izzone，a distance R from the center of the planet．Ernie flies by in a space ship which is in a stable circular orbit at the same altitude R ．
\triangleright If Ernie were to step on a bathroom scale in his space ship， his weight would register as zero．

8． $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright Ernie and Bert experience the same acceleration．
9． $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright Ernie and Bert feel the same gravitational force but Bert also feels an additional force from the ground．
10． $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright If Big Bird were to fly in a circular orbit of radius 3R，Big Bird would experience one third of the gravitational force experienced by Ernie．

11． $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False

$1 p t$ A vicious young gorilla named Donkey Kong swings from a vine and at the bottom of his swing，grabs a football player who he has mistaken for the love of his life．As luck would have it，both Donkey Kong and the linebacker have the same mass．If Donkey Kong starts his swing at rest from an angle of 57 degrees from the vertical，to what final angle do Donkey Kong and his sweetheart ultimately reach on their upward swing？（give answer in degrees）

```
12.A\bigcirc12.59 B}\bigcirc14.73\quad\mathbf{C}\bigcirc17.24\quad\mathbf{D}\bigcirc20.1
    E\bigcirc23.59
F\bigcirc 27.61
G\bigcirc 32.30
H\bigcirc 37.79
```

$1 p t$ A rock is dropped from outer space（initial velocity＝0） at a distance of $2.1 R_{\text {earth }}$ from the Earth＇s center．What speed will it have when it reaches the surface of the planet． （Ignore the air resistance felt during the last few miles of the approach to the planet）$R_{\text {earth }}=6.38 \times 10^{6} \mathrm{~m}, M_{\text {earth }}=$ $5.98 \times 10^{24} \mathrm{~kg} .(i n \mathrm{~m} / \mathrm{s})$

| $\mathbf{1 3 . A} \bigcirc 871$ | $\mathbf{B} \bigcirc 1263$ | $\mathbf{C} \bigcirc 1831$ | $\mathbf{D} \bigcirc 2655$ |
| ---: | :--- | :--- | :--- | :--- |
| $\mathbf{E} \bigcirc 3849$ | $\mathbf{F} \bigcirc 5581$ | $\mathbf{G} \bigcirc 8093$ | $\mathbf{H} \bigcirc 11735$ |

1 pt Consider a projectile which strikes a target as shown below. Ignore all forces except gravity. Point A refers to a point just beyond the muzzle of the cannon, B refers to the highest point in the trajectory and C refers to a point just before landing on the cliff.

\triangleright The horizontal component of the velocity at A is \qquad than the horizontal component of the velocity at C.
14. $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than $\mathbf{C} \bigcirc$ equal to
\triangleright The acceleration at B is \qquad the acceleration at C.
15. $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less thanequal to
\triangleright The magnitude of the vertical component of the velocity at A is _-_- the magnitude of the vertical component of the velocity at C
16. $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than $\mathbf{C} \bigcirc$ equal to
\triangleright The vertical component of the velocity at B is \qquad zero.
17. $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than $\mathbf{C} \bigcirc$ equal to

