

The curve represents an object in simple harmonic motion. Match the points on the curve to the velocity and acceleration of the object.
\triangleright The velocity is positive, and the acceleration is zero.

1. $\mathbf{A} \bigcirc$ Point A $\mathbf{B} \bigcirc$ Point B $\mathbf{C} \bigcirc$ Point C
D \bigcirc Point D $\quad \mathbf{E} \bigcirc$ Point E \quad F \bigcirc Point F
$\mathbf{G} \bigcirc$ Point G $\mathbf{H} \bigcirc$ Point H
\triangleright The velocity is negative, and the acceleration is positive.
2. $\mathbf{A} \bigcirc$ Point A $\mathbf{B} \bigcirc$ Point B $\quad \mathbf{C} \bigcirc$ Point C

| $\mathbf{D} \bigcirc$ Point D | $\mathbf{E} \bigcirc$ Point E | $\mathbf{F} \bigcirc$ Point F |
| :--- | :--- | :--- | :--- |
| $\mathbf{G} \bigcirc$ Point G | $\mathbf{H} \bigcirc$ Point H | |

\triangleright The velocity is positive, and the acceleration is negative.
$\begin{array}{llll}\text { 3. } & \mathbf{A} \bigcirc \text { Point A } & \mathbf{B} \bigcirc \text { Point B } & \mathbf{C} \bigcirc \text { Point C } \\ \mathbf{D} \bigcirc \text { Point } \mathbf{D} & \mathbf{E} \bigcirc \text { Point E } & \mathbf{F} \bigcirc \text { Point F } \\ \mathbf{G} \bigcirc \text { Point } G & \mathbf{H} \bigcirc \text { Point H }\end{array}$
\triangleright The velocity is positive, and the acceleration is positive.
$\begin{array}{lllll}\text { 4. } & \mathbf{A} \bigcirc \text { Point A } & \mathbf{B} \bigcirc \text { Point B } & \mathbf{C} \bigcirc \text { Point C } \\ \mathbf{D} \bigcirc \text { Point D } & \mathbf{E} \bigcirc \text { Point E } & \mathbf{F} \bigcirc \text { Point F } \\ \mathbf{G} \bigcirc \text { Point G } & \mathbf{H} \bigcirc \text { Point H } & \end{array}$

1 pt
Shock absorbers are put on a car to damp out the os-

$\mathbf{5 . A} \bigcirc 1.675$	$\mathbf{B} \bigcirc 2.228$	$\mathbf{C} \bigcirc 2.964$	
$\mathbf{D} \bigcirc 3.942$	$\mathbf{E} \bigcirc 5.243$	$\mathbf{F} \bigcirc 6$	6.973
$\mathbf{G} \bigcirc 9.274$	$\mathbf{H} \bigcirc 12.334$		

$1 p t$ A stationary whistle emits a sound of 182 Hz . If a car hears the whistle with a frequency of 200 Hz , how fast was it moving (in m / s)? Use $340 \mathrm{~m} / \mathrm{s}$ for the sound velocity.
6.A $\bigcirc 21.00$
B $\bigcirc 24.56$
$\mathbf{C} \bigcirc 28.74$
D $\bigcirc 33.63$
$\mathbf{E} \bigcirc 39.34$
$\mathbf{F} \bigcirc 46.03$
$\mathbf{G} \bigcirc 53.86$
$\mathbf{H} \bigcirc 3.01$

A gas is taken through the cyclic process described by the figure above. How much work was done by the gas during the cycle ABCA? (in J)
7.A $\bigcirc 8317$
$\mathbf{B} \bigcirc 9398$
$\mathbf{C} \bigcirc 10619$
D $\bigcirc 12000$
E $\bigcirc 13560$
$\mathbf{F} \bigcirc 15323$
$\mathbf{G} \bigcirc 17315$
$\mathbf{H} \bigcirc 19566$
$1 p t$ The motion of an object is described by the equation: $\mathrm{x}=(2.5 \mathrm{~m}) \cos (\pi \mathrm{t} / 3.1)$,
where t is assumed to be measured in seconds. What is the frequency (in Hz) of the motion?
8.A $\bigcirc 0.069$
$\mathbf{B} \bigcirc 0.077$
$\mathbf{C} \bigcirc 0.088$
$\mathbf{D} 0.099$ $\mathbf{E} \bigcirc 0.112$
$\mathbf{F} \bigcirc 0.126$
$\mathbf{G} \bigcirc 0.143$
$\mathbf{H} \bigcirc 0.161$
$1 p t$ A piano emits sound waves with frequencies that range from a low of about 28 Hz to a high of about $4,200 \mathrm{~Hz}$. What is the longest wavelength of sound produced by a piano? (The speed of sound in air is approximately $343 \mathrm{~m} / \mathrm{s}$.) (in m)

$\mathbf{9 . A} \bigcirc 9.80$	$\mathbf{B} \bigcirc$	12.25	$\mathbf{C} \bigcirc 15.31$	$\mathbf{D} \bigcirc 19.14$
$\mathbf{E} \bigcirc 23.93$	$\mathbf{F} \bigcirc 29.91$	$\mathbf{G} \bigcirc 37.38$	$\mathbf{H} \bigcirc 46.73$	

\qquad

A massive piston traps a fixed amount of helium gas as shown. After being brought to point (a) the system equilibrates to room temperature. The gas is then cooled ISOBARICALLY compressing the gas to half of its original volume (b).
\triangleright the pressure $P_{b} \ldots \ldots \ldots \ldots$
10. $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than
$\mathbf{C} \bigcirc$ equal to
\triangleright The entropy of the gas at "b" is \qquad the entropy of the gas at "a".
11. $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than $\mathbf{C} \bigcirc$ equal to
\triangleright The temperature T_{b}
12. $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than
$\mathbf{C} \bigcirc$ equal to
\triangleright The internal energy $U_{b} \ldots-\ldots-\ldots-\ldots$
13. $\mathbf{A} \bigcirc$ greater than $\mathbf{B} \bigcirc$ less than $\mathbf{C} \bigcirc$ equal to
$1 p t$ A large steam pipe is covered with 1.5 - cm -thick insulating material of thermal conductivity $0.21 \mathrm{~J} /\left(\mathrm{s} \mathrm{m}^{\circ} \mathrm{C}\right)$. How much energy (in J) is lost every second when the steam is at $220{ }^{\circ} \mathrm{C}$ and the outside of the pipe has a temperature of $20^{\circ} \mathrm{C}$? The pipe has a circumference of 7.5 m and a length of 50 m . Neglect losses through the ends of the pipe.

$$
\begin{array}{rlll}
\mathbf{1 4 . A} \bigcirc 6.56 \times 10^{5} & \mathbf{B} \bigcirc & 7.67 \times 10^{5} & \mathbf{C} \bigcirc \\
\mathbf{D} \bigcirc 1.97 \times 10^{5} \\
\mathbf{G} \bigcirc 1.05 \times 10^{6} & \mathbf{E} \bigcirc & 1.23 \times 10^{6} & \mathbf{F} \bigcirc 1.44 \times 10^{6} \\
1.68 \times 10^{6} & \mathbf{H} \bigcirc 1.97 \times 10^{6} & &
\end{array}
$$

1 pt At high noon, the Sun delivers 1.1 kW to each square meter of a blacktop road. If the hot asphalt loses energy only by radiation, what is its equilibrium temperature (in degrees Celsius) of the road surface?
15. $\mathbf{A} \bigcirc 78.4$
$\mathbf{B} \bigcirc 88.6$
$\mathbf{C} \bigcirc 100.1$
D〇 113.1
$\mathbf{E} \bigcirc 127.8$
F〇 144.4
$\mathbf{G} \bigcirc 163.2 \quad \mathbf{H} \bigcirc 184.4$

Scott Pratt - PHY 231 - Spring 2004
$1 p t$ A figure skater is spinning with her arms and one leg extended as far as she can. She then pulls them in tight to her body. As her position contracts,
\triangleright her angular velocity \qquad
16. $\mathbf{A} \bigcirc$ decreases $\mathbf{B} \bigcirc$ increases $\mathbf{C} \bigcirc$ remains the same
\triangleright her rotational kinetic energy
17. $\mathbf{A} \bigcirc$ decreases $\mathbf{B} \bigcirc$ increases
$\mathbf{C} \bigcirc$ remains the same
\triangleright her angular momentum \qquad
18. $\mathbf{A} \bigcirc$ decreases $\mathbf{B} \bigcirc$ increases $\mathbf{C} \bigcirc$ remains the same
\triangleright her moment of inertia \qquad _.
19. $\mathbf{A} \bigcirc$ decreases $\mathbf{B} \bigcirc$ increases
$\mathbf{C} \bigcirc$ remains the same
1 pt
Two sounds have intensities $4 \cdot 10^{-3}$ and $6.5 \cdot 10^{-7} \mathrm{~W} / \mathrm{m}^{2}$. What is the magnitude of the difference in intensity levels between the two sounds in dB ?

$\mathbf{2 0 . A} \bigcirc 12.11$	$\mathbf{B} \bigcirc 16.11$	$\mathbf{C} \bigcirc 21.42$		$\mathbf{D} \bigcirc 28.49$
$\mathbf{E} \bigcirc 37.89$	$\mathbf{F} \bigcirc 50.40$	$\mathbf{G} \bigcirc 67.03$	$\mathbf{H} \bigcirc 89.15$	

[^0]
[^0]: Printed from LON-CAPA@MSU Licensed under GNU General Public License

