Homework \#6, Due at beginning of class Wednesday Mar 2.

1. [4 pts] A hook is at height y above the floor, where y is constant for all negative times: $y=y_{0}$ for $t<0$. For positive times, y oscillates: $y=y_{0}+A \sin \omega t$ for $t>0$. A mass M hangs from an ideal spring attached to this hook. The mass is at height x above the floor. The mass hangs motionless at $x=x_{0}=y_{0}-M g / k$ for $t<0$, where k is the spring constant. Let $\omega_{0}=\sqrt{k / M}$ as usual.
(a) Find the motion $x(t)$ of the mass for $t>0$ if $\omega=2 \omega_{0}$.
(b) Find the motion $x(t)$ of the mass for $t>0$ if $\omega=\omega_{0}$. (You can do this by first finding $x(t)$ for arbitrary ω and then carefully taking the limit $\omega \rightarrow \omega_{0}$; or if you're chicken, you can set $\omega \rightarrow \omega_{0}$ in the equation of motion and solve it.)
2. [4 pts] A driven harmonic oscillator obeys the equation
$\ddot{x}+x=t(A-t)$ for $0<t<A$. Given the initial conditions $x=\dot{x}=0$ at $t=0$, find the subsequent motion $x(t)$ during the time interval $0<t<A$.
3. [4 pts] Marion \& Thornton, problem 3-20 (Same in 4th edition). Do this problem by hand (i.e., using algebra, not using a computer). You need to find the two angular frequencies on either side of the resonance (call them ω_{1} and ω_{2}) where the velocity amplitude is equal to the maximum velocity (on resonance) divided by $\sqrt{2}$, so the kinetic energy has half of its maximum value. This procedure finds the "Full Width at Half Maximum" (FWHM) of the resonance, $\omega_{1}-\omega_{2}$, which is a common way to characterize its width of a resonance peak.
4. [4 pts] A damped driven harmonic oscillator obeys the equation $\ddot{x}+2 \beta \dot{x}+x=t e^{-\alpha t}$ for $t>0$, where $0<\beta<1$ and α is a positive constant.

Given the initial conditions $x=\dot{x}=0$ at $t=0$, find the subsequent motion $x(t)$. Hint: as is so often the case, the easiest way to solve the differential equation is to guess the answer.
5. [4 pts] Marion \& Thornton, problem 3-28 (problem 3-32 in 4th edition).
6. [4 pts] Marion \& Thornton, problem 3-39 (problem 3-43 in 4th edition).

