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Force from Electric FieldsForce from Electric Fields

 We defined the electric field in terms of the electric force

 Now let’s look at the electric force produced by an electric
field on a charge q

 The force exerted on a positive charge is in the same
direction as the electric field and has the magnitude
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Force from Electric Fields (2)Force from Electric Fields (2)
 Electric field lines represent the direction and magnitude of the

electric field
 The electric force on a positive charge will always be tangent to the

electric field lines and point in the direction of the electric field

 For negative charges, the electric force is on the opposite direction
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Torque on an Electric DipoleTorque on an Electric Dipole

 We know that an electric field will exert a force on a point
charge in the direction of the field

 Now let’s put an electric dipole in an electric field

 The dipole is composed of two
charges, +q and -q located a
distance d apart

 The electric field is constant and
points in the upward direction

 The electric dipole moment makes
an angle θ with the electric field
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Torque on an Electric Dipole (2)Torque on an Electric Dipole (2)

 The electric field will exert a force upward on +q and
downward on -q, each with magnitude qE

 These forces balance so that there is no net force on the
dipole

 However, there is a net torque
around the center of mass of the
dipole given by

 Each moment arm has the value
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Torque on an Electric Dipole (3)Torque on an Electric Dipole (3)

 We can then rewrite our expression for the torque as

 Which we can simplify to

 Remembering our definition for
the electric dipole moment,
p = qd
we can write
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Torque on an Electric Dipole (4)Torque on an Electric Dipole (4)

 We can then rewrite our expression for the torque as as a
vector cross product

 To get the direction
• Use your right hand!
• Put your thumb in the direction of

the electric dipole
• Put your index finger in the

direction of the electric field
• Your middle finger will point in

the direction of the torque
• The torque will be perpendicular

to both the electric dipole and the
electric field

 

!
! =
!
p "
!
E

January 19, 2005 Physics for Scientists&Engineers 2 8

Electric FluxElectric Flux

 Let’s imagine that we put a ring with area A perpendicular
to a stream of water flowing with velocity v

 The product of the area A and the velocity v, Av, gives the
volume of water passing through the ring per unit time
• The units are m3/s

 If we tilt the ring at an angle θ, the resulting area is
Acosθ, and the volume of water per unit time flowing
through the ring is Avcosθ

Av

!
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Electric Flux (2)Electric Flux (2)

 We call the amount of water flowing through the ring the
flux of water

 We can make an analogy with electric field lines from a
constant electric field and flowing water

 We call the density of electric field lines through an area A
the electric flux given by
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Electric Flux (3)Electric Flux (3)

 The previous result applies only to constant
electric fields

 In the more general case where the electric field
is not constant everywhere

 We define the electric flux through a closed
surface in terms of an integral over the closed
surface
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GaussGauss’’ Law Law

 Now that we have a definition for the electric
flux, we can formulate Gauss’ Law (named for
German mathematician and scientist Johann Carl
Friedrich Gauss, 1777 - 1855) as

 If we add the definition of the electric flux we
get another expression for Gauss’ Law

 Gauss’ Law tells us that the integral of the electric
field times the area is proportional to the net
charge inside the closed surface
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GaussGauss’’ Law and Coulomb Law and Coulomb’’s Laws Law

 We can derive Coulomb’s Law from Gauss’ Law
 We start with a point charge q
 We assume a spherical surface with radius r

surrounding this charge
• We call this surface a Gaussian surface

q
r
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GaussGauss’’ Law and Coulomb Law and Coulomb’’s Law (2)s Law (2)

 We know that the electric field from a
point charge is radial, and thus is
perpendicular to the Gaussian surface
everywhere

 Thus the electric field is parallel to the
surface normal vector for the entire surface

 So we can write Gauss’ law as

 Because the magnitude of the electric field is the same
at every point on the Gaussian surface we can write
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GaussGauss’’ Law and Coulomb Law and Coulomb’’s Law (3)s Law (3)

 Now we are left with a simple integral
over a spherical surface

 So for Guass’s law related to a point charge
we get

 Which gives

 Electric field from Coulomb’s law for a point charge!
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ShieldingShielding

 The most important application of Gauss’ Law
• The electric field inside a closed conductor is zero.

 We can understand this fact if we think of a
closed conductor
• The conduction electrons will repel each other
• The conduction electrons will all move to the surface of

the conductor
• We can then draw a Gaussian surface inside the

conductor that encloses no charge and thus the electric
field is zero
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ShieldingShielding  IllustrationIllustration

 Start with a hollow
conductor

 Add charge to the
conductor

 The charge will move to
the surface

 We can define a
Gaussian surface that
encloses zero charge
• No electric field!
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Shielding DemonstrationShielding Demonstration

 We will demonstrate shielding in two ways
 We will place Styrofoam peanuts in a container on

a Van de Graaff generator
• In a plastic cup
• In a metal cup

 We will place a professor in a wire cage and try to
fry him with large sparks from a Van de Graaff
generator
• Note that the shielding effect does not require a solid

conductor
• A wire mesh will also work, as long as you don’t get too close to

the open areas


