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ReviewReview

 µ0 is the magnetic permeability of free space whose value is

 The magnitude of the magnetic field at a distance r from a
long, straight wire carrying currrent i is given by

 The magnitude of the magnetic field at the center of a loop
with radius R carrying current i is given by
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Review (2)Review (2)

 Ampere’s Law is

 where the integral is carried out around an Amperian loop
and ienc is the current enclosed by the loop

 The magnitude of the magnetic field inside a long wire with
radius R carrying a current i at a radius r⊥ is given by
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Force on a Current CarryingForce on a Current Carrying  WireWire

 Consider a long, straight wire
carrying carrying a current i
in a constant magnetic field B

 The magnetic field will exert
a force on the moving charges
in the wire

 The charge q flowing in the wire
in a given time t in a length L of wire is given by

 where v is the drift velocity of the electrons
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Force on a Current CarryingForce on a Current Carrying  Wire (2)Wire (2)

 The magnitude of the magnetic force is then

 θ is the angle between the current and the magnetic field
 The direction of the force is perpendicular to both the

current and the magnetic field and is given by the right
hand rule

 This equation can be expressed as a vector cross product

 iL represents the current in a length L of wire
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Parallel Current Carrying WiresParallel Current Carrying Wires

 Consider the case in which two parallel wires are carrying
current

 The two wires will exert a magnetic force on each other
because the magnetic field of one wire will exert a force on
the moving charges in the second wire

 The magnitude of the magnetic field created by a current
carrying wire is given by

 This magnetic field is always perpendicular to the wire with
a direction given by the right hand rule.
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Parallel Current Carrying Wires (2)Parallel Current Carrying Wires (2)

 Let’s start with wire one carrying
a current i1 to the right

 The magnitude of the magnetic
field a distance d from wire one is

 Now consider wire two carrying
a current i2 in the same direction
as i1 placed a distance d from
wire one

 The magnetic field due to wire one
will exert a magnetic force on the
moving charges in the current
flowing in wire two
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Parallel Current Carrying Wires (3)Parallel Current Carrying Wires (3)

 The charge q2 flowing in
wire two in a given time t
in a length L of wire is
given by

 where v is the drift speed of the charge carriers
 The magnetic force is then

 Putting in our expression for B1 we get

q
2
= ti

2
=
L

v
i
2

F = qvB =
L

v
i
2

!
"#

$
%&
vB

1
= i

2
LB

1

F
12
= i

2
L

µ
0
i
1

2!d
"
#$

%
&'
=
µ
0
i
1
i
2
L

2!d



3

February 24, 2005 Physics for Scientists&Engineers 2 9

Torque on a Current-Carrying LoopTorque on a Current-Carrying Loop

 Electric motors rely on the magnetic force exerted on a current carrying wire
 This force is used to create a torque that turns a shaft
 A simple electric motor is depicted below consisting of a single loop carrying

current i in a constant magnetic field B

 The two magnetic forces, F and -F, shown in the figure are of equal magnitude
and opposite direction

 These forces create a torque that tends to rotate the loop around its axis
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Torque on a Current-Carrying Loop (2)Torque on a Current-Carrying Loop (2)

 As the coil turns in the field, the forces on the sides of the loop
perpendicular to the magnetic field will change

 The forces on the square loop with sides  are illustrated below where θ
is the angle between a normal vector, n, and the magnetic field B

 The normal vector is perpendicular to the plane of the wire loop and
points in a direction given by the right hand rule based on the current
flowing in the loop
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Torque on a Current-Carrying Loop (3)Torque on a Current-Carrying Loop (3)

 Here the current is flowing upward in the top
segment and downward in the lower segment
as illustrated by the arrow feathers and
arrowhead

 The force each of the vertical segments is

 The force on the other two sides is parallel or anti-parallel to the axis
of rotation and cannot cause a torque

 The sum of the torque on the upper side plus the torque on the lower
side gives the torque exerted on the coil about the center of the loop

 where A = a2
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Magnetic Dipole MomentMagnetic Dipole Moment

 If we replace this loop with N loops wound close together
we can write

 Although we derived this expression for a square loop, this
express applies to circular loops as well as long as the
magnetic field is uniform

 We can describe this coil with one parameter consisting of
information about the coil only, combined with information
about the magnetic field

 We define the magnitude of the magnetic dipole moment
of the coil above to be

! = N!
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Magnetic Dipole Moment (2)Magnetic Dipole Moment (2)

 The direction of the magnetic dipole
moment, µ, is given by the right hand
rule and points in the direction of the
surface normal vector n

 We can rewrite our expression for the torque as

 which we can generalize to

 The torque will always be perpendicular the
magnetic field magnetic dipole moment and the
magnetic field
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PotentialPotential  Energy of aEnergy of a  Magnetic DipoleMagnetic Dipole

 A magnetic dipole has a potential energy in an external
magnetic field
• If the magnetic dipole is aligned with the magnetic field, it is in its

minimum energy condition
• If the magnetic dipole oriented in a direction opposite to the

external field, the dipole is in its maximum energy condition

 The magnetic potential energy U of a magnetic dipole in an
external magnetic field B can be written as

 where θ is the angle between the magnetic dipole moment
and the external field.

 This potential energy of orientation can be applied to many
physical situations concerning magnetic dipoles in external
magnetic fields
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Magnetic Fields of SolenoidsMagnetic Fields of Solenoids

 Current flowing through a single loop of wire produces a
magnetic field that is not very uniform

 Applications often require a uniform magnetic field
 A common first step toward a more uniform magnetic field

is the Helmholtz coil
 A Helmholtz coil consists of two sets of coaxial wire loops
  Each set of coaxial loops acts like a single loop
 Carrying the idea of multiple loops one step farther, we

could attempt to generate a constant magnetic field lines
from four loops

 Let’s look at the progression…
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Magnetic Fields of Solenoids (2)Magnetic Fields of Solenoids (2)
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MagneticMagnetic Fields of Solenoids (3) Fields of Solenoids (3)

 To create a uniform magnetic field, a solenoid is used consisting of
many loops wound close together

 Solenoids have many applications and are found in everyday life
 The magnetic field lines from a solenoid with 600 turns are shown below
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Ideal SolenoidsIdeal Solenoids

 The field from a real-life solenoid has fringe fields near
the ends of the solenoid
• The field is constant away from the ends of the solenoid
• There is a small fringe field outside the solenoid near the ends of

the solenoid

 An ideal solenoid is assumed to have a constant magnetic
field B inside the solenoid and zero field outside the
solenoid

 We will calculate the magnetic field of an ideal solenoid by
applying Ampere’s Law to a section of the solenoid far from
the ends of the solenoid
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Ideal Solenoids (2)Ideal Solenoids (2)

 We first define an Amperian Loop over which to carry out
the required integral shown by the red line below

 

!
B • d
!
s"! =

!
B • d
!
s

a

b

! +
!
B • d
!
s

b

c

! +
!
B • d
!
s

c

d

! +
!
B • d
!
s

d

a

!

 

!
B • d
!
s"! = 0 + 0 + Bh + 0

February 24, 2005 Physics for Scientists&Engineers 2 20

Ideal Solenoids (3)Ideal Solenoids (3)

 The enclosed current is the current in the
enclosed turns of the solenoid

 The current is the same in each turn
 Thus the enclosed current is

 where n is the number of turns per unit length
 The magnetic field inside an ideal solenoid is

 Note that this expression is only valid away from the ends of a real-
world solenoid

 Note that there is no dependence on position inside the solenoid
• An ideal solenoid creates a uniform magnetic field everywhere inside the

solenoid and zero magnetic field outside the solenoid
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ToroidsToroids

 One can create a toroidal magnet by
“bending” a solenoid magnet such
that the two ends meet as illustrated
here

 The wire is wound around the doughnut
shape forming a series of loops, each
with the same current flowing through
it

 Just like for the ideal solenoid, the magnetic field outside
the coils of the ideal toroid is zero

 The magnetic field inside the toroid coil volume can be
calculated by using Ampere’s Law
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 We assume an Amperian loop in the form of a circle with radius r such that
r1 < r < r2

 The magnetic field is always directed tangential to the Amperian loop, so we can
write

 The enclosed current is the number of turns N in the toroid times the current i
in each loop, so Ampere’s law gives us

 So we find that the magnetic field of a toroid
is given by

 Note that the magnitude of the electric field
depends on r

 The direction is given by the right hand rule

Toroids Toroids (2)(2)
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