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1 HISTORY

Isaac Newton solved the premier scientific problem of his day, which was

to explain the motion of the planets. He published his theory in the famous

book known as Principia. The full Latin title of the book1 may be translated

into English as Mathematical Principles of Natural Philosophy.

The theory that the planets (including Earth) revolve around the sun

was published by Nicolaus Copernicus in 1543. This was a revolutionary

idea! The picture of the Universe that had been developed by astronomers

before Copernicus had the Earth at rest at the center, and the sun, moon,

planets and stars revolving around the Earth. But this picture failed to

explain accurately the observed planetary positions. The failure of the Earth-

centered theory led Copernicus to consider the sun as the center of planetary

orbits. Later observations verified the Copernican theory. The important

advances in astronomical observations were made by Galileo and Kepler.

Galileo Galilei was perhaps the most remarkable individual in the history

of science. His experiments and ideas changed both physics and astronomy.

In physics he showed that the ancient theories of Aristotle, which were still

accepted in Galileo’s time, are incorrect. In astronomy he verified the Coper-

nican picture of the Universe by making the first astronomical observations

with a telescope.

Galileo did not invent the telescope but he made some of the earliest tele-

scopes, and his telescopes were the best in the world at that time. Therefore

he discovered many things about the the solar system and stars:

• craters and mountains on the moon

• the moons of Jupiter

• the phases of Venus

• the motion of sunspots

1Philosophiae Naturalis Principia Mathematica
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• the existence of many faint stars

These discoveries provided overwhelming evidence in favor of the Copernican

model of the solar system.

Johannes Kepler had extensive data on planetary positions, as functions

of time, from observations collected earlier by Tycho Brahe. He analyzed the

data based on the Copernican model, and deduced three empirical laws of

planetary motion:

Kepler’s Laws

1. The planets move on elliptical orbits with the sun at one focal point.

2. The radial vector sweeps out equal areas in equal times.

3. The square of the period of revolution is proportional to the cube of

the semimajor axis of the ellipse.

Newton started with the results of Galileo and Kepler. His goal, then, was

to explain why. Why do the planets revolve around the sun in the manner

discovered by Galileo and Kepler? In particular, what is the explanation for

the mathematical regularities in Kepler’s laws of orbital motion? To answer

this question, Newton had to develop the laws of motion and the law of

universal gravitation. And, to analyze the motion he invented a new branch

of mathematics, which we now call Calculus.

The solution to planetary motion was published in Principia in 1687.

Newton had solved the problem some years earlier, but kept it secret. He was

visited in 1684 by the astronomer Edmund Halley. Halley asked what force

would keep the planets in elliptical orbits. Newton replied that the force must

be an inverse-square law, which he had proven by mathematical analysis;

but he could not find the paper on which he had written the calculations!

After further correspondence, Halley realized that Newton had made great

advances in physics but had not published the results. With Halley’s help,

Newton published Principia in which he explained his theories of motion,

gravity, and the solar system.

After the publication of Principia, Newton was the most reknowned sci-

entist in the world. His achievement was fully recognized during his lifetime.

Today scientists and engineers still use Newton’s theory of mechanics. Classi-

cal mechanics breaks down at atomic dimensions, but for engineering systems

Newton’s theory is valid and extremely accurate.

How is this early history of science relevant to the study of calculus?

Newton used calculus for analyzing motion, although he published the calcu-

lations in Principia using older methods of geometrical analysis. (He feared

that the new mathematics—calculus—would not be understood or accepted.)
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Ever since that time, calculus has been necessary to the understanding of

physics and its applications in engineering and science.

In this chapter we’ll study some basic applications of calculus to classical

mechanics.
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2 POSITION, VELOCITY, AND ACCELERATION

2.1 Position and velocity

Suppose an object M moves along a straight line.2 We describe its motion

by giving the position x as a function of time t, as illustrated in Fig. 1. The

variable x is the coordinate, i.e., the displacement from a fixed point 0 called

the origin. Physically, the line on which M moves might be pictured as a

road, or a track. Mathematically, the positions form a representation of the

ideal real line. The coordinate x is positive if M is to the right of 0, or

negative if to the left. The absolute value |x| is the distance from 0. The

possible positions of M are in one-to-one correspondence with the set of real

numbers. Hence position is a continuous function x(t) of the independent

variable t, time.

Example 1. What is the position as a function of time if M is at rest at a

point 5m to the left of the origin?

Solution. Because M is not moving, the function x(t) is just a constant,

x(t) = −5 m. (1)

Note that the position has both a number (−5) and a unit (m, for meter).

In this case the number is negative, indicating a position to the left of 0.

The number alone is not enough information. The unit is required. The unit

may be changed by multiplying by a conversion factor. For example, the

conversion from meters (m) to inches (in) is

5 m = 5 m× 38 in

1 m
= 190 in. (2)

(There are 38 inches per meter.) So, the position could just as well be written

as

x(t) = −190 in. (3)

Equations (3) and (1) are equivalent. This example shows why the number

alone is not enough: The number depends on the unit.

A Comment on Units. In physical calculations it is important to keep

track of the units—treating them as algebraic quantities. Dropping the unit

will often lead to a failed calculation. Keeping the units has a bonus. It is a

method of error checking. If the final unit is not correct, then there must be

an error in the calculation; we can go back and figure out how to correct the

2We’ll call the moving object M. The letter M could stand for “moving” or “mass.”
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calculation.

Example 2. A car travels on a straight road, toward the East, at a constant

speed of 35mph. Write the position as a function of time. Where is the car

after 5 minutes?

Solution. The origin is not specified in the statement of the problem, so

let’s say that x = 0 at time t = 0. Then the position as a function of time is

x(t) = +

(
35

mi

hr

)
t, (4)

where positive x is east of the origin. Equation (4) is based on the formula

distance = speed× time,

familiar from grade school; or, taking account of the signs,

displacement = velocity× time.

Any distance must be positive. ‘Displacement’ may be positive or negative.

Similarly, ‘speed’ must be positive, but ‘velocity’ may be positive or negative,

negative meaning that M is moving to smaller x.

After 5 minutes, the position is

x(5 min) = 35
mi

hr
× 5 min

= 35
mi

hr
× 5 min× 1 hr

60 min
= 2.917 mi. (5)

(We multiply by the conversion factor, 1 hr/60 min, to reduce the units.) The

position could be expressed in feet, as

x(5 min) = 2.917 mi× 5280 ft

1 mi
= 15400 ft. (6)

So, after 5 minutes the car is 15400 feet east of its initial position.

? ? ?

It is convenient to record some general, i.e., abstract formulas. If M is at

rest at x0, then the function x(t) is

x(t) = x0. (object at rest) (7)

If M moves with constant velocity v0 then

x(t) = x0 + v0t. (object with constant velocity) (8)
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Figure 2 illustrates graphs of these functions. The abscissa (horizontal axis)

is the independent variable t, and the ordinate (vertical axis) is the dependent

variable x. The slope in the second graph is v0. Note that the units of v0
must be a length unit divided by a time unit, because

v0 = slope =
rise

run
=

∆x

∆t
; (9)

for example, the units could be m/s. But the slope in a graph is the derivative

of the function! Thus, the derivative of the position x(t) is the velocity v(t).

So far we have considered only constant velocity. If the velocity is not

constant, then the instantaneous velocity at a time t is the slope of the curve

of x versus t, i.e., the slope of the tangent line. This is nothing but the

derivative of x(t). Letting v(t) denote the velocity,

v(t) = lim
∆t→0

∆x

∆t
=
dx

dt
. (10)

Another notation for the time-derivative, often used in mechanics, is ẋ(t) ≡
dx/dt. Because v(t) is defined by the limit ∆t→ 0, there is an instantaneous

velocity at every t. We summarize the analysis by a definition:

Definition. The velocity v(t) is a function of time t, defined by

v(t) = dx/dt.

2.2 Acceleration

If the velocity is changing then the object M is accelerating. The acceleration

is defined as the time-derivative of the velocity,

a(t) = lim
∆t→0

∆v

∆t
=
dv

dt
. (definition of acceleration) (11)

Taking the limit ∆t → 0, the acceleration is defined at every instant. Also,

because v = dx/dt, the acceleration a is the second derivative of x(t),

a(t) =
d2x

dt2
= ẍ(t). (12)

Example 3. A car accelerates away from a stop sign, starting at rest.

Assume the acceleration is a constant 5 m/s2 for 3 seconds, and thereafter is

0. (a) What is the final velocity of the car? (b) How far does the car travel

from the stop sign in 10 seconds?

Solution. (a) Let the origin be the stop sign. During the 3 seconds while the

car is accelerating, the acceleration is constant and so the velocity function



Daniel Stump 7

must be

v(t) = at, (13)

because the derivative of at (with respect to t) is a. Note that v(0) = 0; i.e.,

the car starts from rest. At t = 3 s, the velocity is the final velocity,

vf = v(3 s) = 5
m

s2
× 3 s = 15

m

s
. (14)

(b) The position as a function of time is x(t), and

dx

dt
= v(t). (15)

Equation (15) is called a differential equation for x(t). We know the deriva-

tive; what is the function? The general methods for solving differential equa-

tions involve integration.3 But for this simple case we can figure out the

answer by guess-work.

Before we try to do the calculation, let’s make sure we understand the

problem. The car moves with velocity v(t) = at (constant acceleration) for 3

seconds. How far does the car move during that time? Thereafter it moves

with constant velocity vf = 15m/s. How far does it move from t = 3 s to

t = 10 s? The combined distance is the distance traveled in 10 s.

For t < 3 s the velocity is v(t) = at. This must be the derivative of x(t).

What function x(t) has derivative at? The derivative is also a power of t, so

x(t) is also a power; recall that the derivative of tp is ptp−1. If we set p = 2

then the derivative is ∝ t, as required. Multiplying by a constant factor does

not change the power of t. Evidently x(t) should be Ct2 for some constant

C. Then dx/dt = 2Ct. This is supposed to be at; thus, C = a/2. So the

distance at t, for t < 3 s, is 1

2
at2. We could also add a constant x0 because

the derivative of a constant is 0. So, more generally, x(t) = x0 + 1

2
at2. But

the stop sign is at x = 0, so x(0) = 0; that initial condition requires x0 = 0.

Hence the position as a function of t, for t < 3 s, is

x(t) = 1

2
at2. (for t ≤ 3 s) (16)

For t > 3 s the velocity is constant vf . What function x(t) has derivative

vf? By similar reasoning,

x(t) = c+ vft (for t ≥ 3 s) (17)

3We’ll begin to study the integral and integration in Chapter 12.
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general equations for constant acceleration

position x(t) = x0 + v0t+
1

2
at2

velocity v(t) = dx/dt = v0t+ at

acceleration a(t) = dv/dt = a, constant

Table 1: Formulae for constant acceleration. (x0 = initial position, v0 =

initial velocity, and a = acceleration.)

where c is a constant. Both (16) and (17) must be correct. So, if we set

t = t1 ≡ 3 sec in the two equations, we must have

x(t1) = 1

2
at21 = c+ vft1. (18)

(Remember, t1 = 3 s is the time when the car ceases to accelerate.) The only

unknown in (18) is c, and solving the equation gives

c = 1

2
at21 − vft1 (19)

=
1

2

(
5 m/s

2
)

(3 s)
2 − (15 m/s) (3 s) = −22.5 m. (20)

The position of the car at t = 10 s is now obtained from (17),

x(10 s) = c+ vf × 10 s

= −22.5 m + 15
m

s
× 10 s = 127.5 m. (21)

After 10 s the car has moved 127.5m.

Generalization. Some useful general formulae for constant acceleration

are recorded in Table 1. In the table, v0 is a constant equal to the velocity at

t = 0. Also, x0 is a constant equal to the position at t = 0. As an exercise,

please verify that a = dv/dt and v = dx/dt. Remember that x0 and v0 are

constants, so their derivatives are 0. The velocity and position as functions

of t for constant acceleration are illustrated in Fig. 3.

Example 4. A stone is dropped from a diving platform 10m high. When

does it hit the water? How fast is it moving then?

Solution. We’ll denote the height above the water surface by y(t). The

initial height is y0 = 10m. The initial velocity is v0; because the stone

is dropped, not thrown, its initial velocity v0 is 0. The acceleration of an
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object in Earth’s gravity, neglecting the effects of air resistance,4 is a = −g
where g = 9.8m/s2. The acceleration a is negative because the direction of

acceleration is downward; i.e., the stone accelerates toward smaller y. Using

Table 1, the equation for position y as a function of t is

y(t) = y0 − 1

2
gt2. (22)

The variable y is the height above the water, so the surface is at y = 0. The

time tf when the stone hits the water is obtained by solving y(tf) = 0,

y0 − 1

2
gt2f = 0. (23)

The time is

tf =

√
2y0
g

=

√
2× 10 m

9.8 m/s2
= 1.43 s. (24)

Note how the final unit came out to be seconds, which is correct. The time

to fall to the water surface is 1.43 s.

The equation for velocity is

v(t) =
dy

dt
= −gt. (25)

This is consistent with the second row in Table 1, because v0 = 0 and a = −g.
The velocity when the stone hits the water is

vf = v(tf) = −9.8
m

s2
× 1.43 s = −14.0

m

s
. (26)

The velocity is negative because the stone is moving downward. The final

speed is the absolute value of the velocity, 14.0m/s.

2.3 Newton’s second law

Newton’s second law of motion states that the acceleration a of an object is

proportional to the net force F acting on the object,

a =
F

m
, (27)

or F = ma. The constant of proportionality m is the mass of the object.

Equation (27) may be taken as the definition of the quantity m, the mass.

4Air resistance is a frictional force called “drag,” which depends on the size, shape,

surface roughness, and speed of the moving object. The effect on a stone falling 10 m is

small.
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Vectors. For two- or three-dimensional motion, the position,

velocity, and accleration are all vectors—mathematical quanti-

ties with both magnitude and direction. We will denote vectors

by boldface symbols, e.g., x for position, v for velocity, and a

for acceleration. In hand-written equations, vector quantities are

usually indicated by drawing an arrow (→) over the symbol.

Acceleration is a kinematic quantity—determined by the motion. Equa-

tion (27) relates acceleration and force. But some other theory must deter-

mine the force. There are only a few basic forces in nature: gravitational,

electric and magnetic, and nuclear. All observed forces (e.g., contact, friction,

a spring, atomic forces, etc.) are produced in some way by those basic forces.

Whatever force is acting in a system, (27) states how that force influences

the motion of a mass m (in classical mechanics!).

The mass in (27) is called the inertial mass, because it would be deter-

mined by measuring the acceleration produced by a given force. For example,

if an object is pulled by a spring force of 50N, and the resulting acceleration

is measured to be 5m/s2, then the mass is equal to 10 kg.

The gravitational force is exactly (i.e., as precisely as we can measure

it!) proportional to the inertial mass. Therefore the acceleration due to

gravity is independent of the mass of the accelerating object. Near the surface

of the Earth, all falling objects have the same acceleration due to gravity,

g = 9.8m/s2, neglecting the force of air resistance.5 It took the great genius

of Galileo to see that the small differences between falling objects are not

produced by gravity but by air resistance. The force of gravity is proportional

to the mass so accelerations by gravity are independent of the mass.

The equation F = ma tells an engineer how an object will respond to a

specified force. Because the acceleration a is a derivative,

a =
dv

dt
=
d2x

dt2
,

Newton’s second law is a differential equation.

5Take a sheet of paper and drop it. It falls slowly and irregularly, not moving straight

down but fluttering this way and that, because of aerodynamic forces. But wad the same

piece of paper up into a small ball and drop it. Then it falls with the same acceleration as

a more massive stone.
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3 PROJECTILE MOTION

A projectile is an object M moving in Earth’s gravity with no internal propul-

sion, and no external forces except gravity. (A real projectile is also subject

to aerodynamic forces such as drag and lift. We will neglect these forces, a

fairly good approximation if M moves slowly.)

The motion of a projectile must be described with two coordinates: hor-

izontal (x) and vertical (y). Figure 4 shows the motion of the projectile in

the xy coordinate system. The curve is the trajectory of M.

Suppose M is released at (x, y) = (x0, y0) at time t = 0. Figure 4 also

indicates the initial velocity vector v0 which is tangent to the trajectory at

(x0, y0). Let θ be the angle of elevation of the initial velocity; then the x and

y components of the initial velocity vector are

v0x = v0 cos θ, (28)

v0y = v0 sin θ. (29)

Horizontal component of motion. The equations for the horizontal mo-

tion are

x(t) = x0 + v0xt, (30)

vx(t) = v0x. (31)

These are the equations for constant velocity, vx = v0x. There is no horizon-

tal acceleration (neglecting air resistance) because the gravitational force is

vertical.

Vertical component of motion. The equations for the vertical motion

are

y(t) = y0 + v0yt− 1

2
gt2, (32)

vy(t) = v0y − gt. (33)

These are the equations for constant acceleration, ay = −g. (As usual, g =

9.8m/s2.) The vertical force is Fy = −mg, negative indicating downward,

where m is the mass of the projectile. The acceleration is ay = Fy/m by

Newton’s second law.6 Thus ay = −g. The acceleration due to gravity does

not depend on the mass of the projectile because the force is proportional to

the mass.

Example 5. Verify that the derivative of the position vector is the velocity

vector, and the derivative of the velocity vector is the acceleration vector, for

6Newton’s second law is F = ma.
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the projectile.

Solution. Position, velocity, and acceleration are all vectors. The position

vector is

x(t) = x(t)̂i + y(t)̂j. (34)

Here î denotes the horizontal unit vector, and ĵ denotes the vertical unit

vector (cf. Fig. 5). For the purposes of describing the motion, these unit

vectors are constants, independent of t. The time dependence of the position

vector x(t) is contained in the coordinates, x(t) and y(t).

The derivative of x(t) is

dx

dt
=

dx

dt
î +

dy

dt
ĵ

= v0x̂i + (v0y − gt) ĵ

= vx̂i + vy ĵ = v. (35)

As required, dx/dt is v. The derivative of v(t) is

dv

dt
=

dvx

dt
î +

dvy

dt
ĵ

= 0 + (−g)̂j = −gĵ. (36)

The acceleration vector has magnitude g and direction −ĵ, i.e., downward;

so a = −gĵ. We see that dv/dt = a, as required.

3.0.1 Summary

To describe projectile motion (or 3D motion in general) we must use vectors.

However, for the ideal projectile (without air resistance) the two components—

horizontal and vertical—are independent. The horizontal component of the

motion has constant velocity v0x, leading to Eqs. (30) and (31). The vertical

component of the motion has constant acceleration ay = −g, leading to Eqs.

(32) and (33).

To depict the motion, we could plot x(t) and y(t) versus t separately, or

make a parametric plot of y versus x with t as independent parameter.7 The

parametric plot yields a parabola. Galileo was the first person to understand

the trajectory of an ideal projectile (with negligible air resistance): The

trajectory is a parabola.

7Exercise 11.
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4 CIRCULAR MOTION

Consider an object M moving on a circle of radius R, as illustrated in Fig. 6.

We could describe the motion by Cartesian coordinates, x(t) and y(t), but it

is simpler to use the angular position θ(t) because the radius R is constant.

The angle θ is defined in Fig. 6. It is the angle between the radial vector and

the x axis. The value of θ is sufficient to locate M. From Fig. 6 we see that

the Cartesian coordinates are

x(t) = R cos θ(t), (37)

y(t) = R sin θ(t). (38)

If θ(t) is known, then x(t) and y(t) can be calculated from these equations.

In calculus we always use the radian measure for an angle θ. The radian

measure is defined as follows. Consider a circular arc with arclength s on a

circle of radius R. The angle subtended by the arc, in radians, is

θ =
s

R
. (radian measure) (39)

4.1 Angular velocity and the velocity vector

The angular velocity ω(t) is defined by

ω(t) =
dθ

dt
. (angular velocity) (40)

This function is the instantaneous angular velocity at time t. For example,

if M moves with constant speed, traveling around the circle in time T , then

the angular velocity is constant and given by

ω =
2π

T
. (constant angular velocity) (41)

To derive this result, consider the motion during a time interval ∆t. The

arclength ∆s traveled along the circle during ∆t is R∆θ where ∆θ is the

change of θ during ∆t, in radians. The angular velocity is then

ω =
∆θ

∆t
=

∆s/R

∆t
. (42)

Because the speed is constant, ∆θ/∆t is constant and independent of the

time interval ∆t. Let ∆t be one period of revolution T . The arclength for a

full revolution is the circumference 2πR. Thus

ω =
2πR/R

T
=

2π

T
. (43)
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The instantaneous speed of the object is the rate of increase of distance

with time,

v(t) = lim
∆t→0

∆s

∆t
= lim

∆t→0

R∆θ

∆t

= R
dθ

dt
= Rω(t). (44)

But what is the instantaneous velocity? Velocity is a vector v, with both

direction and magnitude. The magnitude of v is the speed, v = Rω. The

direction is tangent to the circle, which is the same as the unit vector θ̂. (See

Fig. 6.) Thus the velocity vector is

v = Rωθ̂, (45)

which points in the direction of θ̂ and has magnitude Rω. In general, v, ω,

θ and θ̂ are all functions of time t as the particle moves around the circle.

But of course for circular motion, R is constant. We summarize our analysis

as a theorem:

Theorem 1. The velocity vector in circular motion is

v(t) = Rω(t) θ̂(t). (46)

4.2 Acceleration in circular motion

Now, what is the acceleration of M as it moves on the circle? The acceleration

a is a vector, so we must determine both its magnitude and direction. Unlike

the velocity v, which must be tangent to the circle, the acceleration has both

tangential and radial components.

Recall that we have defined acceleration as the derivative of velocity in

the case of one-dimensional motion. The same definition applies to the vector

quantities for two- or three-dimensional motion. Using the definition of the

derivative,

a(t) = lim
∆t→0

v(t+ ∆t)− v(t)

∆t
=
dv

dt
. (47)

The next theorem relates a for circular motion to the parameters of the

motion.

Theorem 2. The acceleration vector in circular motion is

a = R
dω

dt
θ̂ −Rω2 r̂. (48)
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Proof: We must calculate the derivative in (48) using (46) for v. At time

t, the acceleration is

a(t) =
dv

dt
=

d

dt

(
Rωθ̂

)

= R

(
dω

dt
θ̂ + ω

dθ̂

dt

)
. (49)

Note that (49) follows from the Leibniz rule for the derivative of the product

ω(t)θ̂(t). Now,

dθ̂

dt
= lim

∆t→0

∆θ̂

∆t
. (50)

Figure 7 demonstrates that ∆θ̂ ≈ −r̂∆θ for small ∆θ. (The relation of

differentials is dθ̂ = −r̂ dθ.) The direction of ∆θ̂ is radially inward. This

little result has interesting consequences, as we’ll see! The derivative is then

dθ̂

dt
= lim

∆t→0

−r̂∆θ

∆t
= −r̂

dθ

dt
= −r̂ω. (51)

Substituting this result into (49) we find

a(t) = R
dω

dt
θ̂ −Rω2 r̂, (52)

which proves the theorem.

The radial component of the acceleration vector is ar = −Rω2. This

component of a is called the centripetal acceleration. The word “centripetal”

means directed toward the center. We may write ar in another form. By

Theorem 9-1, ω = v/R; therefore

ar = −v
2

R
. (53)

If the speed of the object is constant, then dω/dt = 0 and the acceleration a

is purely centripetal. In uniform circular motion, the acceleration vector is

always directed toward the center of the circle with magnitude v2/R.

Imagine a ball attached to a string of length R, moving around a circle

at constant speed with the end of the string fixed. The trajectory must be a

circle because the string length (the distance from the fixed point) is constant.

The ball constantly accelerates toward the center of the circle (ar = −v2/R)

but it never gets any closer to the center (r(t) = R, constant)! This example

illustrates the fact that the velocity and acceleration vectors may point in

different directions. In uniform circular motion, the velocity is tangent to the
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circle but the acceleration is centripetal, i.e., orthogonal to the velocity.

Example 6. Suppose a race car travels on a circular track of radius R =

50m. (This is quite small!) At what speed is the centripetal acceleration

equal to 1 g?

Solution. Using the formula a = v2/R, and setting a = g, the speed is

v =
√
gR =

√
9.8 m/s2 × 50 m = 22.1 m/s. (54)

Converting to miles per hour, the speed is about 48mi/hr. A pendulum

suspended from the ceiling of the car would hang at an angle of 45 degrees to

the vertical (in equilibrium), because the horizontal and vertical components

of force exerted by the string on the bob would be equal, both equal to mg.

The pendulum would hang outward from the center of the circle, as shown in

Fig. 8. Then the string exerts a force on the bob with an inward horizontal

component, which is the centripetal force on the bob.

?

The equation ar = −v2/r for the centripetal acceleration in circular mo-

tion was first published by Christiaan Huygens in 1673 in a book entitled

Horologium Oscillatorium. Huygens, a contemporary of Isaac Newton, was

one of the great figures of the scientific revolution. He invented the earliest

practical pendulum clocks (the main subject of the book mentioned). He

constructed excellent telescopes, and discovered that the planet Saturn is en-

circled by rings. In his scientific work, Huygens was guided by great skill in

mathematical analysis. Like Galileo and Newton, Huygens used mathematics

to describe nature accurately.
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5 KEPLER’S LAWS OF PLANETARY MOTION

Kepler’s first law is that the planets travel on ellipses with the sun at one focal

point. Newton deduced from this empirical observation that the gravitational

force on the planet must be proportional to 1/r2 where r is the distance from

the sun.

Figure 9 shows a possible planetary orbit. The ellipse is characterized by

two parameters: a = semimajor axis and e = eccentricity.

5.1 Kepler’s third law

Kepler’s third law relates the period T and the semimajor axis a of the ellipse.

To the accuracy of the data available in his time, Kepler found that T 2 is

proportional to a3. The next example derives this result from Newtonian

mechanics, for the special case of a circular orbit. A circle is an ellipse with

eccentricity equal to zero; then the semimajor axis is the radius.

Example 7. Show that T 2 ∝ r3 for a planet in a circular orbit of radius r

around the sun.8

Solution. In analyzing the problem, we will neglect the motion of the sun.

More precisely, the sun and planet both revolve around their center of mass.

But because the sun is much more massive than the planet, the center of

mass is approximately at the position of the sun, so that the sun may be

considered to be at rest. Then the planet moves on a circle around the sun.

Let m denote the mass of the planet, and M the mass of the sun.

For a circular orbit the angular speed of the planet is constant, dω/dt = 0.

Therefore the acceleration is a = −rω2r̂. In terms of the speed v = rω,

a = −v
2

r
r̂. (55)

The direction is −r̂, i.e., centripetal, toward the sun. The gravitational force

exerted by the sun on the planet is

F = −GMm

r2
r̂, (56)

which is also centripetal. Equation (56) is Newton’s theory of Universal

Gravitation, in which the force is proportional to 1/r2.

Newton’s second law of motion states that F = ma. Therefore,

mv2

r
=
GMm

r2
. (57)

8We consider an ideal case in which the other planets have a negligible effect on the

planet being considered. This is a good approximation for the solar system, but not exact.
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The distance traveled in time T (one period of revolution) is 2πr (the circum-

ference of the orbit), so the speed is v = 2πr/T . Substituting this expression

for v into (57) gives

(
2πr

T

)2

=
GM

r
. (58)

Or, rearranging the equation,

T 2 =
4π2r3

GM
; (59)

we see that T 2 is proportional to r3, as claimed.

In obtaining (59) we neglected the small motion of the sun around the

center-of-mass point. This is a very good approximation for the solar system.

In this approximation, T 2/r3 is constant, i.e., it has the same value for all

nine planets.

5.2 Kepler’s second law

Kepler’s second law is that the radial vector sweeps out equal areas in equal

times. This law is illustrated in Fig. 10. In Newtonian mechanics it is a

consequence of conservation of angular momentum. The next two examples

show how Kepler’s second law follows from Newton’s theory.

Example 8. Conservation of angular momentum

The angular momentum L of an object of mass m moving in the xy plane

is defined by

L = m (xvy − yvx) . (60)

Show that L is constant if the force on the object is central.

Solution. To show that a function is constant, we must show that its

derivative is 0.9 In (60), the coordinates x and y, and velocity components

vx and vy, are all functions of time t. But the particular combination in L is

constant, as we now show. The derivative of L is

dL

dt
= m

[
dx

dt
vy + x

dvx

dt
− dy

dt
vx − y

dvx

dt

]

= mvxvy + xFy −mvyvx − yFx

= xFy − yFx. (61)

In the first step we have used the fact that dx/dt = v, and dv/dt = a; also,

9The derivative of any constant is 0.
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by Newton’s second law, the acceleration a is equal to F/m. The final line

(61) is called the torque on the object.

For any central force the torque is 0. What is meant by the term “central

force” is that the force is in the direction of ±r̂, i.e., along the line to the

origin. (The sign—attractive or repulsive— is unimportant for the proof

of conservation of angular momentum.) Figure 11 shows a central force F

toward the origin. The components of F are

Fx = −F cos θ and Fy = −F sin θ (62)

where F is the strength of the force and the minus signs mean that F is

toward 0. Thus the torque on the object is

torque = xFy − yFx

= −r cos θ F sin θ + r sin θ F cos θ = 0. (63)

Since the torque is 0, equation (61) implies that dL/dt = 0. Since the

derivative is 0, the angular momentum L is constant, as claimed.

Example 9. Kepler’s law of equal areas

Show that the radial vector from the sun to a planet sweeps out equal

areas in equal times.

Solution. Figure 10(a) shows the elliptical orbit. The shaded area ∆A is

the area swept out by the radial vector between times t and t + ∆t. The

shaded area may be approximated by a triangle, with base r and height

r∆θ, where ∆θ is the change of the angular position between t and t + ∆t.

Approximating the area as a triangle is a good approximation for small ∆t.

Now consider the limit ∆t → 0; i.e., ∆t and ∆A become the differentials dt

and dA. The area of the triangle becomes

dA =
1

2
× base× height =

1

2
× r × rdθ = 1

2
r2dθ. (64)

Thus, in the limit ∆t→ 0, where we replace ∆t by dt,

dA

dt
=

1

2
r2
dθ

dt
= 1

2
r2ω. (65)

We’ll use this result presently.

But now we must express the angular momentum in polar coordinates.

The position vector of M is x = rr̂, and its x and y components are

x = r cos θ and y = r sin θ. (66)
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The velocity vector is

v =
dx

dt
=
dr

dt
r̂ + r

dθ

dt
θ̂, (67)

because dr̂ = θ̂ dθ.10 The x and y components of velocity are

vx =
dr

dt
cos θ − r

dθ

dt
sin θ, (68)

vy =
dr

dt
sin θ + r

dθ

dt
cos θ. (69)

L is defined in (60); substituting the polar expressions for x, y, vx and vy we

find

L = m (xvy − yvx)

= m

[
r
dr

dt
cos θ sin θ + r2

dθ

dt
cos2 θ

]

−m
[
r
dr

dt
sin θ cos θ − r2

dθ

dt
sin2 θ

]

= mr2
dθ

dt

(
cos2 θ + sin2 θ

)
= mr2

dθ

dt
. (70)

The result is

L = mr2ω. (71)

Comparing this to (65) we see that dA/dt is L/2m. But L is a constant of the

motion by conservation of angular momentum. Thus dA/dt is constant. In

words, the rate of change of the area is constant, i.e., independent of position

on the orbit. Hence Kepler’s second law is explained: The area increases at

a constant rate, so equal areas are swept out in equal times.

5.3 The inverse square law

Kepler’s first law is that the planets travel on ellipses with the sun at one

focal point. We will prove that this observation implies that the force on the

planet must be an inverse square law, i.e., proportional to 1/r2 where r is the

distance from the sun. The calculations depend on all that we have learned

about derivatives and differentiation.

The equation for an elliptical orbit in polar coordinates (r, θ) is

r(θ) =
a(1− e2)

1 + e cos θ
(72)

where a = semimajor axis and e = eccentricity. Figures 9 and 10 show graphs

10Exercise 20.
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of the ellipse. What force is implied by the orbit equation (72)? The radial

acceleration is11

ar =
d2r

dt2
− r

(
dθ

dt

)2

. (73)

The first term involves the change of radius; the second term is the centripetal

acceleration −rω2. Now, ar must equal Fr/m by Newton’s second law. To

determine the radial force Fr we must express ar as a function of r. We know

that angular momentum is constant; by (71),

mr2
dθ

dt
= L, so

dθ

dt
=

L

mr2
. (74)

Now starting from (72), and applying the chain rule,12

dr

dt
=

dr

dθ

dθ

dt
=

−a(1− e2)

(1 + e cos θ)2
(−e sin θ)

dθ

dt

=
a(1− e2)e sin θ

(1 + e cos θ)2
L(1 + e cos θ)2

ma2(1− e2)2
=

Le sin θ

ma(1− e2)
; (75)

and, taking another derivative,

d2r

dt2
=

Le cos θ

ma(1− e2)

dθ

dt
=

Le cos θ

ma(1− e2)

L

mr2
. (76)

Combining these results in (73), the radial component of the acceleration is

ar =
L2e cos θ

m2a(1− e2)r2
− r

(
L

mr2

)2

=
L2

m2r2

{
e cos θ

a(1− e2)
− 1 + e cos θ

a(1− e2)

}
=

−L2

m2a(1− e2)r2
. (77)

By Newton’s second law, then, the radial force must be

Fr = mar = − k

r2
where k =

L2

ma(1− e2)
. (78)

Our result is that the force on the planet must be an attactive inverse-

square-law, Fr = −k/r2. The orbit parameters are related to the force

parameter k by

L2 = ma(1− e2)k. (79)

11See Exercise 21.
12The calculations of (75) and (76) require these results from Chapter 11: the derivative

(with respect to θ) of cos θ is − sin θ, and the derivative of sin θ is cos θ.
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5.3.1 Newton’s Theory of Universal Gravitation

From the fact that planetary orbits are elliptical, Newton deduced that Fr =

−k/r2. Also, k must be proportional to the planet’s mass m because T 2 ∝
a3, independent of the mass (cf. Section 9.5.1). But then k must also be

proportional to the solar mass, because for every action there is an equal but

opposite reaction. Therefore the force vector must be

F = Fr r̂ = −GMm

r2
r̂ (80)

where G is a constant. Newton’s theory of universal gravitation is that any

two masses in the universe, m and M , attract each other according to the

force (80).

Newton’s gravitational constant G cannot be determined by astronomi-

cal observations, because the solar mass M is not known independently. G

must be measured in the laboratory. An accurate measurement of G is very

difficult, and was not accomplished in the time of Newton. The first measure-

ment of G was by Henry Cavendish in 1798. G is hard to measure because

gravity is extremely weak,

G = 6.67× 10−11 m3 s−2 kg−1. (81)

Newton’s theory of gravity is very accurate, but not exact. A more ac-

curate theory of gravity—the theory of general relativity—was developed by

Einstein. In relativity, planetary orbits are not perfect ellipses; the orbits pre-

cess very slowly. Indeed this precession is observed in precise measurements

of planetary positions, and the measurements agree with the relativistic cal-

culation.

? ? ?

The examples in this chapter show how calculus is used to understand

profound physical observations such as the motion of the planets. That is

why calculus is so important in the education of scientists and engineers.



Figure 1: An example of position x as a function of time t for an object

moving in one dimension. The object starts at rest at the origin at t = 0,

begins moving to positive x, has positive acceleration for about 1 second, and

then gradually slows to a stop at a distance of 1m from the origin.

Figure 2: Motion of an object: (a) zero velocity and (b) constant positive

velocity.
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Figure 3: Constant acceleration. The two graphs are (a) velocity v(t) and

(b) position x(t) as functions of time, for an object with constant acceleration

a.

Figure 4: Projectile motion. Horizontal (x) and vertical (y) axes are set

up to analyze the motion. The initial position is (x, y) = (x0, y0). The initial

velocity v0 is shown as a vector at (x0, y0). The curve is the trajectory of

the projectile. The inset shows the initial velocity vector v0 separated into

horizontal and vertical components, v0x̂i and v0y ĵ; θ is the angle of elevation

of v0. (̂i = unit horizontal vector, ĵ = unit vertical vector)

24



Figure 5: The unit vectors î and ĵ point in the x and y directions, respectively.

Any vector A may be written as Ax̂i + Ay ĵ where Ax = A cos θ and Ay =

A sin θ. The magnitude of the vector is A = |A| =
√
A2

x +A2
y.

Figure 6: Circular motion. A mass M moves on a circle of radius R. The

angle θ(t) is used to specify the position. In radians, θ = s/R where s is the

arclength. The velocity vector v(t) is tangent to the circle. The inset shows

the unit vectors θ̂ and r̂, which point in the direction of increasing θ and r,

respectively.
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Figure 7: Proof that dθ̂ = −r̂ dθ. P1 and P2 are points on the circle with

angle difference ∆θ. The inset shows that ∆θ̂ (= θ̂2− θ̂1) is centripetal (i.e.,

in the direction of −r̂) and has magnitude ∆θ in the limit of small ∆θ.

45

toward the center

of the circle

Figure 8: A race car on a circular track has centripetal acceleration v2/R.

If v2/R = g, then the equilibrium of a pendulum suspended from the ceiling

is at 45 degrees to the vertical. In the frame of reference of the track, the

bob accelerates centripetally because it is pulled toward the center by the

pendulum string. In the frame of reference of the car there is a centrifugal

force—an apparent (but fictitious) force directed away from the center of the

track.

26



Figure 9: A possible planetary orbit. The sun S is at the origin, which is one

focal point of the ellipse, and the planet P moves on the ellipse. The large

diameter is 2a, where a is called the semimajor axis. The distance between

the foci is 2ae where e is called the eccentricity. The perihelion distance is

r− = a(1−e) and the aphelion distance is r+ = a(1+e). A circle is an ellipse

with e = 0.

Figure 10: Kepler’s second law. The radial vector sweeps out equal areas

in equal times. (a) The radial vector sweeps out the shaded region as the

planet moves from P1 to P2. (b) The planet moves faster near perihelion

(PH) and slower near aphelion (AH).
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Figure 11: An attractive central force. The Cartesian coordinates at P are

x = r cos θ and y = r sin θ. The force components are Fx = −F cos θ and

Fy = −F sin θ where F is the magnitude of the force vector. The torque,

xFy − yFx, is 0.
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EXERCISES

Section 2: Position, velocity, and acceleration

1. Show that ẋ = v and ẍ = a for the functions in Table 1.

2. Consider a car driving on a straight road at 60mph (mi/hr).

(a) How far does it travel in 1 second?

(b) What is the speed in ft/s?

3. Race car. A race car accelerates on a drag strip from 0 to 60mph in 6

seconds.

(a) What is the acceleration a? Express a in ft/sec2.

(b) How far does the car travel in that 6 seconds? Express the answer in feet.

4. The graph in Fig. 12 shows the acceleration a(t) of an object, as a function

of time t. At t = 0 the velocity is 0. Make plots of velocity v(t) and position

x(t). Put accurate scales on the axes. What is the final position?

Figure 12: Exercise 4.

5. Consider the motion shown in the graph of position x as a function of

time t, shown in Fig. 13. Sketch graphs of the velocity v(t) and acceleration

a(t). In words, state what is happening between t = 2 and 3 s; between t = 7

and 7.75 s.

6. Suppose a mass m = 3 kg moves along the x axis according to the formula

x(t) = Ct2(20− t)2
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Figure 13: Exercise 5.

for 0 ≤ t ≤ 20. (The time t is measured in seconds.) The initial acceleration

(at t = 0) is 4 m/s2.

(a) Determine C.

(b) Determine the velocity at t = 5, 10, 15, and 20 s.

(c) Find the force on the object, in newtons, at t = 10 s.

(d) Describe the motion in words.

7. Consider an object moving in one dimension as illustrated in Fig. 14.

(a) The acceleration between t = 0 and 3 s is constant. What is the acceler-

ation?

(b) The acceleration between t = 3 and 4 s is constant. What is the acceler-

ation?

(c) In words, what is happening for t > 4 s?

8. Conservation of energy is a unifying principle in science. For the dynamics

of a particle moving in one dimension, the energy is

E = 1

2
mv2 + U(x)

where v = dx/dt and U(x) = potential energy. Show that E is constant,

i.e., dE/dt = 0. (Hints: The force and potential energy are related by

F (x) = −dU/dx. Use the chain rule to calculate dU/dt, and remember

Newton’s second law.)

9. Force F (x) and potential energy U(x), as functions of position x, are
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Figure 14: Exercise 7

related by F (x) = −dU/dx. An object M is attached to one end of a spring,

and the other end of the spring is attached to an immovable wall. The

potential energy of the spring is 1

2
kx2 where x = displacement of M from

the equilibrium. (x can be positive or negative.) Show that the force on M

doubles as the displacement doubles. Show that the force is opposite in sign

to the displacement. What does this imply about the direction of the force?

10. A stone is dropped from a tower. Let y(t) be the height above the ground

(y = 0 at ground level) as a function of time t. The gravitational potential

energy is U(y) = mgy. Using the equations for constant acceleration ay =

−g, write a formula for total energy E as a function of time t. Is E constant?

Section 3: Projectiles

11. Consider projectile motion, neglecting air resistance. Sketch a graph of

the horizontal coordinate x(t) as a function of time t. Sketch a graph of the

vertical coordinate y(t) as a function of time t. Sketch a parametric plot of

the vertical coordinate y versus the horizontal coordinate x, with t as the

independent parameter. (Try using the parametric plot mode of a graphing

calculator.) What curve is the graph of y versus x?

12. A ball is thrown horizontally at 50mi/hr from a height of 5 ft. Where

will it hit the ground?

13. TBA

14. TBA
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Section 4: Circular motion

15. Consider a go-cart moving on a circular track of radius R = 40m.

Suppose it starts from rest and speeds up to 60 km/hr in 20 seconds (with

constant acceleration). What is the acceleration vector at t = 10 s? Give

both the direction and magnitude.

16. Imagine a ball attached to a string of length R, moving along a circle

at constant speed with the end of the string fixed. The ball constantly

accelerates toward the center of the circle but it never gets any closer to

the center. According to Newton’s second law there must be a force in the

direction of the acceleration. What is this force? Is it centripetal? If so,

why?

17. TBA

Section 5: Motion of the planets

18. The Earth’s orbit around the Sun is nearly circular, with radius R⊕ =

1.496 × 1011 m. From this, and the laboratory measurement of Newton’s

gravitational constant, G = 6.67 × 10−11m3s−2kg−1, calculate the mass of

the sun.

19. Use a graphing calculator or computer program to plot the curve defined

by Eq. (72). (Pick representative values of the parameters a and e,) This is

an example of a polar plot, in which the curve in a plane is defined by giving

the radial distance r as a function of the angular position θ. Be sure to set

the aspect ratio (= ratio of length scales on the horizontal and vertical axes)

equal to 1.

20. Consider a particle M that moves on the xy plane. The polar coordinates

(r, θ) and unit vectors (r̂, θ̂) are defined in Fig. 15.

(a) Show that x = r cos θ and y = r sin θ.

(b) Show that for a small displacement of M,

∆r̂ ≈ θ̂ ∆θ and ∆θ̂ ≈ −r̂∆θ.

(Hint: See Fig. 7 but generalize it to include a radial displacement.)

(c) The position vector of M is x = rr̂, which has magnitude r and direction

r̂. In general, both r and r̂ vary with time t, as the object moves. Show that



Daniel Stump 33

the velocity vector is

v =
dr

dt
r̂ + r

dθ

dt
θ̂.

Figure 15: Exercise 20. Polar coordinates (r, θ) and unit vectors r̂ and θ̂.

21. Derive Eq. (73) for the radial component ar of the acceleration in polar

coordinates. [Hint: Use the results of the previous exercise.]

22. Prove that the relation of parameters in (79) is true for a circular orbit.

(For a circle, the eccentricity e is 0.)

23. Look up the orbital data—period T and semimajor axis a—for the plan-

ets. Calculate T 2/a3 for all nine planets. Use the year (y) as the unit of time

for T , and the astronomical unit (AU) as the unit of distance for a. Explain

the values that you find for T 2/a3.

24. TBA

25. Reduced mass. Suppose two masses, m1 and m2, exert equal but

opposite forces on each other. Define the center of mass position R and

relative vector r by

R =
m1x1 +m2x2

m1 +m2

and r = x1 − x2.

(Note that r is the vector from m2 to m1.)

(a) Show that d2R/dt2 = 0, i.e., the center of mass point moves with constant

velocity. (It could be at rest.)
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(b) Show that

µ
d2r

dt2
= F(r)

where µ is the reduced mass, m1m2/(m1 +m2). Thus the two-body problem

reduces to an equivalent one-body problem with the reduced mass.

(c) Show that Kepler’s third law for the case of a circular orbit should prop-

erly be

T 2 =
4π2r3

G(M +m)

rather than (59). Why is (59) approximately correct?
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General Exercises

26. Platform diving. A diver jumps off a 10m platform. How many

seconds does she have to do all her twists and flips before she enters the

water? (Assume her initial upward velocity is 0.)

27. Conservation of energy. A rock falls from a cliff 100m high, and air

resistance can be neglected.

(a) Plot y (= height) versus t (= time).

(b) Plot v (= speed) versus t.

(c) Plot v2/2 + gy versus t. Describe the result in words.

28. Braking. (a) You are driving on the highway at 60mph (= 88 ft/s).

There is an accident ahead, so you brake hard, decelerating at 0.3 g =

9.6 ft/s2.

(a) How much time does it take to stop?

(b) How far will you travel before stopping?

(c) How far would you travel if your initial speed were 75mph, assuming the

same deceleration?

29. A ball rolling down an inclined plane has constant acceleration a. It is

released from rest. U is a unit of length.

During the first second the ball travels a distance of 1 U on the inclined plane.

(a) How far does it travel during the second second?

(b) How far does it travel during the third second?

(c) How far does it travel during the tenth second?

(d) How far did it travel altogether after 10 seconds?

(e) What is a? (Express the answer in U/s2.)

(f) Galileo made careful measurements of a ball rolling down an inclined

plane, and discovered that the distance D is given by the equation D = 1

2
at2.

He observed that the distances for fixed time intervals are in proportion to

the sequence of odd integers. Do your anwers agree?

30. A castle is 150m distant from a catapult. The catapult projects a stone

at 45 degrees above the horizontal. What initial speed v0 is required to hit

the castle?

(Hint: The initial velocity vector is v0 = îv0 cos 45+ ĵv0 sin 45; that is, v0x =

v0y = v0/
√

2.)
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31. Parametric plots in Mathematica

A parametric plot is a kind of graph—a curve of y versus x where x and y

are known as functions of an independent variable t called the parameter. To

plot the curve specified by

x = f(t) and y = g(t),

the Mathematica command is

ParametricPlot[{f[t],g[t]},{t,t1,t2},

PlotRange->{{x1,x2},{y1,y2}},

AspectRatio->r]

Here {t1,t2} is the domain of t, and {x1,x2} and {y1,y2} are the ranges of

x and y. To give the x and y axes equal scales, r should have the numerical

value of (y2-y1)/(x2-x1).

Use Mathematica to make the parametric plots below. In each case name

the curve that results.

(a) x(t) = t, y(t) = t− t2.

(b) x(t) = t, y(t) = 1/t.

(c) x(t) = cos(2πt), y(t) = sin(2πt).

(d) x(t) = 2 cos(2πt), y(t) = 0.5 sin(2πt).

(e) x(t) = cos(2πt/3), y(t) = sin(2πt/7).

32. Baseball home run. A slugger hits a ball. The speed of the ball as it

leaves the bat is v0 = 100mi/hr = 147 ft/s. Suppose the initial direction is 45

degrees above the horizontal, and the initial height is 3 ft. The acceleration

due to gravity is 32 ft/s2.

(a) Plot y as a function of x, e.g., using Mathematica or a graphing calculator.

(b) When precisely does the ball hit the ground?

(c) Where precisely does the ball hit the ground?

(d) We have neglected air resistance. Is that a good approximation? Justify

your answer.

33. Conservation of energy for a projectile

(a) Consider a projectile, moving under gravity but with negligible air resis-
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tance, such as a shot put. Assume these initial values

x0 = 0 and y0 = 1.6 m,

v0x = 10 m/s and v0y = 8 m/s.

Use Mathematica or a graphing calculator to make plots of x versus t and y

versus t. Show scales on the axes.

(b) Now plot the total energy (kinetic plus potential) versus t,

E(t) = 1

2

[
v2

x(t) + v2
y(t)

]
+mgy(t)

for m = 7kg.

(c) Prove mathematically that E is a constant of the motion.

34. The jumping squirrel. A squirrel wants to jump from a point A on

a branch of a tree to a point B on another branch. The horizontal distance

from A to B is x = 5 ft, and the vertical distance is y = 4 ft. If the squirrel

jumps with an initial speed of 20 ft/s, at what angle to the horizontal should

it jump?

35. Flight to Mars. To send a satellite from Earth to Mars, a rocket must

accelerate the satellite until it is in the correct elliptical orbit around the

sun. The satellite does not travel to Mars under rocket power, because that

would require more fuel than it could carry. It just moves on a Keplerian

orbit under the influence of the sun’s gravity.

The satellite orbit must have perihelion r− = RE (= radius of Earth’s orbit)

and aphelion r+ = RM (= radius of Mars’s orbit) as shown in the figure.

The planetary orbit radii are

RE = 1.496× 1011 m and RM = 2.280× 1011 m. (82)

(a) What is the semimajor axis of the satellite’s orbit?

(b) Calculate the time for the satellite’s journey. Express the result in months

and days, counting one month as 30 days.

36. Parametric equations for a planetary orbit

The sun is at the origin and the plane of the orbit has coordinates x and y.

We can write parametric equations for the time t, and coordinates x and y,
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Figure 16: A journey to Mars.

in terms of an independent variable ψ:

t =
T

2π
(ψ − ε sinψ)

x = a (cosψ − ε)

y = a
√

1− ε2 sinψ

The fixed parameters are T = period of revolution, a = semimajor axis, and

ε = eccentricity.

(a) The orbit parameters of Halley’s comet are

a = 17.9 AU and ε = 0.97.

Use Mathematica to make a parametric plot of the orbit of Halley’s comet.

(You only need the parametric equations for x and y, letting the variable ψ

go from 0 to 2π for one revolution.)

(b) Calculate the perihelion distance. Express the result in AU.

(c) Calculate the aphelion distance. Express the result in AU. How does this

compare to the radius of the orbit of Saturn, or Neptune?

(d) Calculate the period of revolution. Express the result in years.

37. Parametric surfaces

A parametric curve is a curve on a plane. The curve is specified by giving
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coordinates x and y as functions of an independent parameter t.

A parametric surface is a surface in 3 dimensions. The surface is specified

by giving coordinates x, y, and z as functions of 2 independent parameters

u and v. That is, the parametric equations for a surface have the form

x = f(u, v), y = g(u, v), z = h(u, v).

As u and v vary over their domains, the points (x, y, z) cover the surface.

The Mathematica command for plotting a parametric surface is ParametricPlot3D.

To make a graph of the surface, execute the command

ParametricPlot3D[{f[u,v],g[u,v],h[u,v]},

{u,u1,u2},{v,v1,v2}]

In this command, (u1, u2) is the domain of u and (v1, v2) is the domain of v.

Before giving the command you must define in Mathematica the functions

f[u,v], g[u,v], h[u,v]. For example, for exercise (a) below you would

define

f[u_,v_]:=Sin[u]Cos[v]

Make plots of the following parametric surfaces. In each case name the

surface.

(a) For 0 ≤ u ≤ π and 0 ≤ v ≤ 2π,

f(u, v) = sinu cos v

g(u, v) = sinu sin v

h(u, v) = cosu

(b) For 0 ≤ u ≤ 2π and −0.3 ≤ v ≤ 0.3,

f(u, v) = cosu+ v cos(u/2) cosu

g(u, v) = sinu+ v cos(u/2) sinu

h(u, v) = v sin(u/2)

(c) For 0 ≤ u ≤ 2π and 0 ≤ v ≤ 2π,

f(u, v) = 0.2(1− v/(2π)) cos(2v)(1 + cosu) + 0.1 cos(2v)
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g(u, v) = 0.2(1− v/(2π)) sin(2v)(1 + cosu) + 0.1 sin(2v)

h(u, v) = 0.2(1− v/(2π)) sinu+ v/(2π)
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