Equation Sheet for Exam 3

Magnetic forces

- The Lorentz force is $\mathbf{F} = q \mathbf{v} \times \mathbf{B}$. The direction is determined by the right-hand rule.
- Combined electric and magnetic forces, $\mathbf{F} = \mathbf{q} \mathbf{E} + \mathbf{q} \mathbf{v} \times \mathbf{B}$.
- The magnetic force on a current carrying wire is $\mathbf{F} = \mathbf{I} \times \mathbf{B} L$.
- The cyclotron equation. For a charged particle moving on a circle in a uniform magnetic field,

$$\frac{mv^2}{r} = qvB$$

Ampere's Law

- The magnetic field due to a long straight current carrying wire is $B = \frac{\mu_0 I}{2\pi r}$.
- The magnetic field in a solenoid is $B = \frac{\mu_0 NI}{I}$.
- The magnetic constant is $\mu_0 = 4\pi \times 10^{-7}$ Tm/A.

Faraday's Law

- Faraday's law of electromagnetic induction is $\mathcal{E} = -\frac{\Delta\Phi}{\Delta t}$, where \mathbf{E} = electromotive force around a loop, and Φ = the magnetic flux through any surface bounded by the loop; Φ = B A_{perp} .
- Transformer equations

$$\frac{V_2}{V_1} = \frac{N_2}{N_1}$$
 and $I_1 V_1 = I_2 V_2$

Light

- Snell's law is $n_1 \sin \theta_1 = n_2 \sin \theta_2$.
- \bullet c = 2.998 × 10⁸ m/s
- $\lambda f = c$
- $\bullet I = \frac{P}{4\pi r^2}$