ISP 209 Equations of Physics – Part 2

Electrostatics

Coulomb's Law. The magnitude of the electrostatic force between two charged particles is equal to the Coulomb constant K times the product of the charges $Q_1 Q_2$ divided by the square of the distance r between the centers;

$$F = \frac{KQ_1Q_2}{r^2}$$
.
(K = 8.99 × 10⁹ Nm²/C²)

• The electric field **E**(**x**) is a physical entity which is created by electric charges and which exerts a force on electric charges. Quantitatively, **E**(**x**) is equal to the force per unit charge **F**/q on a small test charge *q* placed at **x**;

$$\mathbf{E}(\mathbf{x}) = \mathbf{F} / q.$$

• The electric potential $V(\mathbf{x})$ is the electrostatic potential energy per unit charge $U(\mathbf{x})/q$ if a small test charge q is placed at x; $V(\mathbf{x}) = U(\mathbf{x})/q$.

• The voltage drop across a capacitor, i.e., the difference in electrostatic potential between the conductors, is Q/C where +Q and -Q are the charges on the conductors and C = capacitance;

$$V = Q / C$$
.

Or, if the potential drop is known, e.g., from the emf of a battery, then the charge on the capacitor plates is Q = CV.

The energy stored in a capacitor is

$$U=\frac{1}{2}QV.$$

Electric current

The definition of the electric current I in a wire is $I = \Delta Q / \Delta t$.

Ohm's Law. The voltage drop *V* across a resistor is equal to the current *I* flowing through the resistor times the electrical resistance *R*;

$$V = IR$$
.

Or, if the potential drop is known, e.g., from the emf of a battery, the current is I = V/R.

Joule's Law. The power dissipated as heat in a resistor is I^2R , where I = current and R = resistance; $P = l^2 R$.

The power supplied to a DC current is P = IV where I = current and V = voltage.

The average power supplied to an AC current is P = IV where I = RMS current and V = RMS voltage.

Magnetic Force

If a charged particle with charge q moves with velocity **v** through a magnetic field **B**, the magnetic force on the particle is

$\mathbf{F} = q\mathbf{v} \times \mathbf{B}$.

The direction of the force is perpendicular to both \mathbf{v} and \mathbf{B} , in the direction determined by the right-hand rule for the cross product.

If the velocity vector \mathbf{v} is orthogonal to the magnetic field vector \mathbf{B} , then the magnitude of the force is

$$F = qvB$$
.

The force on a current carrying wire is $\mathbf{F} = /\mathbf{L} \times \mathbf{B}$.