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Experiment 1 
Introduction to 191 Lab 

1. Introduction  

 In Physics 191 we will make extensive use of Kaleidagraph [Kgraph], a software package for 
graphing and data analysis, and Excel, for calculations. Kgraph is a substantial program but is 
nonetheless intuitive and extremely easy to use. Three major things that Kgraph does for us are:  

1. Making high quality, easily customized graphs of your data.  
2. Curve fitting, i.e., finding the parameters of a theoretical function that best describe your 

data. Kgraph provides estimates of the statistical uncertainties of the fit parameters, which 
are difficult to obtain with other commercial software (such as Excel). 

3. Algebraic manipulation of numbers (though Excel is even more powerful) 

2. Goals: 

1. Familiarize yourself with basic calculations in Excel 
2. Familiarize yourself with Kaleidagraph's plotting, calculation, and fitting options 
3. Get a first impression of the style of labs and analysis for the class 
4. Have a first look at histograms and standard deviation 
5. Have a first look at fitting and residuals  
6. Have a first try at searching for flaws (“systematic errors”) in data. 

3. Background 

3.1 In this first lab, we will learn how to use Excel and Kgraph on a PC equipped with the 
Windows XP operating system. Your lab report will contain printouts of the graphs that you 
generate. The Reference Guide (RG), and your notes made while performing this lab, will 
also serve as your guide for doing basic analysis operations. You may write your report 
outside of class by hand or with Word. But you must use your time carefully in class to plot and 
analyze your data. Since you will be changing lab partners regularly, take turns, and be sure 
each of you understands the software.  KEEP this write-up for reference in future labs. 

3.2 For this laboratory exercise, you will analyze information from an actual mileage log kept for 
a Prius automobile.  The log usually contains an entry for each tank of gas purchased (missing 
data were occasionally estimated).  The Prius uses a hybrid engine system, with both a gasoline 
engine and electric motors.  The gasoline engine ultimately provides all the power, but a large 
battery stores energy when the engine is not heavily loaded, or when the car is braking.  The 
electric motor uses energy stored in the battery to provide extra power after a stop, when passing, 
when going in reverse, or even to allow the engine to be turned off temporarily.  The battery and 
electric motor allows the gas engine to run nearer its optimum efficiency, part of why the Prius 
gets more miles per gallon than most cars. 
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The odometer measures the distance (in miles) a car has traveled by counting the number of turns 
of the tires. The amount of gas purchased is calculated by the gas pump.  The Prius has a 
dashboard meter that displays the miles per gallon (mpg) being obtained at the moment, and 
since the last reset (usually in this mileage log, that means since the last tank of gas).  These 
readouts use the same distance measurement as the odometer, but the gas consumption estimate 
is based on the time (measured in microseconds) that the computer has opened the fuel injectors.  
This assumes that the fuel pressure is constant and therefore the amount of fuel consumed is 
proportional to the time the injector was open.   

4 Excel Data Calculations Goal: print 1st page of modified spreadsheet 

4.1 Use the desktop shortcut to the R drive to open R:\exp1_ref\Prius.xls, an Excel file 
containing the mileage log and some date information.  Now SAVE to your computer’s U drive 
space: File|Save As|U:  (in Filename box)|Enter; pick your section folder and the exp1 folder 
inside it.  Careful: saving on R will hang! The Days column calculates number of days since 
the last fill-up. The month column calculates the months, starting from the beginning of 2002, so 
month 7.5 is the middle of July, 2002, and month 20 is the beginning of August, 2003.  The 
Month of year column gives the month, independent of year, so month 9.3 would be early 
September of 2002, or 2003, or 2004.  Click on a cell and the formula used will be displayed. 

4.2 Now you will calculate some other quantities from the original data using Excel formulas.  
See the Reference Guide chapter on Excel if you need help. Calculate Miles (the mileage since 
the last tank; but use 456 for the miles on the first tank of gas); MPG Calc = miles / gallons; 
miles/day; and calc/read = MPG Calc/mpg readout.  For miles per day, you will get an error for a 
long day of freeway driving; instead of dividing by the days, divide by the larger of 1, and the 
number of days: see Help|max function. Print the 1st page (File|Print|Print Page(s) From:1 
To:1).  Then save and close your file: Kgraph won’t open the file if Excel still has it open. 

5. Kaleidagraph: Histograms and Statistics Goal: print 2 histograms and record statistics 

5.1 Navigating Kgraph 
5.1.1. See the Reference Guide for a terse introduction to basic Kgraph; use as needed. 
5.1.2. You can modify an existing graph by double-clicking or right-clicking objects to bring up 
a menu for that object: for example, the title of a graph, or an axis label. 
5.1.3 Kgraph has a good Help system; the >> spins you through successive related entries.  
5.1.4. If you want to print out the “Statistics” screen, or anything else you can’t figure out how to 
print from a Windows program, hold down ALT and hit the Print Screen key.  A copy of the 
active window is now on the clipboard.  Then open Word, and paste with Ctrl-V, and print the 
Word document.  The statistics screen or other clipboard contents can also be pasted into a 
Kgraph Plot, or a Kgraph Layout window. 

5.2 Begin your analysis of the mileage data by opening Kgraph, and using Kgraph to open the 
Prius.xls file you just created.  Kgraph properly opens an Excel spreadsheet with column 
headings as long as the headings are in the first row. 

5.3 Make a histogram plot of the MPG Calc column. The plot will consist of bars rising from the 
x axis. In a histogram, data points are considered as being grouped into “bins” (ranges of values, 
say x between 20 and 30, and so on).  The extent of the bar along the x axis will represent the 
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range of values of the variable in each “bin”, and the height of the bar (along the y axis) will 
represent how many data points fell into each bin.  For your first plot, make the histogram with a 
bin size of 5 miles per gallon. You can find more about histograms by looking up the term in the 
index of Taylor.  

5.4 For every plot in this entire class you should: Give the plot a title which explains the reason 
for this plot, such as Temperature Dependence of Velocity (metric units); no two plots should 
have the same title. Include your name, section, experiment, and date in the upper right hand 
corner of the graph (Help|Find|Text Tool). You can later copy/paste this text to other graphs. 
Make sure that the graph labels, legends, etc. do not overwrite any significant part of the graph. 
Label the axes of every graph with names and units, e.g., for a histogram Number of Log Entries 
and Calculated MPG (mi/gal); or for a scatter plot, say Velocity (m/s) and Time (months). Print 
your histogram and save it.  

5.5 Now make and print the histogram with a bin size of 2 miles per gallon. Does the new 
histogram look the same as the previous graph?  Why or why not?  Did you learn anything new 
by changing the bin size? As you write in your lab notebook, or lab report, always include 
the number of the part of the write-up (e.g. 5.5). 

5.6 Now you will use one of the advanced functions of Kgraph to analyze the data.  Click on the 
frame of the data sheet to highlight it; then click on the MPG Calc column, and then click 
Function|Statistics as described in the Reference Guide.  Note the entries for Mean and Std 
Deviation. The Mean is just the average value; Std Deviation is an abbreviation for Standard 
Deviation, a measure of the scatter of the values around the average. Both are discussed in 
Taylor.  Write these two values down in your notebook or paste the statistics block onto one of 
your histograms.  On the histogram with 5 mpg bins, indicate the location of the mean, and draw 
a horizontal line stretching from (mean – standard deviation) to (mean + standard deviation).   

6. Kaleidagraph: Scatter Plots and Fits Goal: print mpg plot, fuzzy parabola fits and residuals. 

6.1 Scatter Plot Now you will seek a better understanding of the mpg data by plotting it as a 
function of time.  Make a scatter plot of calculated mpg as a function of month, that is, mpg vs. 
time.  Whenever we say “y vs. x” we mean the first variable should be on the y (vertical) 
axis and the second should be on the x (horizontal) axis. Do not use the Line Plot, as it is a 
“connect the dots” plot not well suited to our uses: by default it doesn’t display much of the data, 
and the lines both over-lead the eye and get in the way of fits we will apply to the data. Make the 
data 18-point hollow diamonds (e.g. Plot|Variable Settings|Marker size|18).  Label the axes of 
the graph with names and units, e.g., Velocity (m/s) and Temperature (K). Does this graph tell 
you anything about the reason for the structure you saw in the mpg histogram?  How would you 
explain it?  Hint: look at the definition of month in section 4.1. 

6.2 Next you will “fit” a mathematical model.  The “fitting” consists of writing down a 
mathematical expression (“curve”) with some unknown parameters and letting Kgraph 
automatically try values of the parameters to find those that best “fit” the data.  The 
mathematical method Kgraph uses to find the parameters is called “least squares”.  Least squares 
fitting minimizes the sum of the square of the difference (“residual”) between the measured data 
and the values predicted by the curve.  This will be discussed in detail in Chapter 8 of Taylor.   
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To get a feel for fitting, you will now work through an example where the model is perfectly 
known, and see how well Kgraph reconstructs the true model.  Open in Kgraph the file 
r:\exp1_ref\fuzzy_parabola.xls.  Make a scatter plot of y = f(x) vs. x.  Now fit the model a + bx + 
cx2 to the data using the directions in the Reference Guide.  Write down the values you obtain for 
the parameters a, b and c.  The curve should pass perfectly through the data and Kgraph should 
report essentially zero uncertainty (“error”) in the parameters.  Check that you got the correct 
values by opening the fuzzy_parabola.xls file with Excel.  Look at the equation used for the f(x) 
column and write down the correct values of the parameters in your notebook. 

6.3 Now make a new plot of fuzzy f vs. x. The “fuzzy” value was created by adding a simulated 
“measurement error” to the value of f. (It is impossible to make a measurement which returns the 
exact “true” value). I used a random number between -1 and +1; the last column gives the 
difference between the fuzzy and real value.    Fit the fuzzy f data to the parabola.  Print the plot 
with the fit, the values of the parameters and their uncertainties. Are they close to the correct 
values?  

6.4 Now look at how the fit differs from the data by examining the “residuals”, defined as the 
difference: residual = data- fit, at each data point. Kgraph uses fit-data, but that isn’t a big 
problem. Make and print a histogram of the residuals (see Reference Guide).  You should see 
values roughly between -1 and 1: the differences between the fit and the data are about the same 
as the “fuzz” we put in. If we’d looked at the residuals of the fit to the un-fuzzed f(x), the values 
would have been tiny. Extra Credit: plot the residuals for the un-fuzzed fit. 

7.1 Data Analysis. Goal: print 2 fits to mpg vs. time; % difference between calc and readout 

Now return to the mpg vs. month data. There isn’t a precise theory of how mileage should vary 
with time, so the models will be approximate.  You will make two fits to the data, one based on a 
cosine curve and the other on a 6th order polynomial.  Before doing so, predict (write down 
before you do the fits!) which you think will do the better job, and why.   

7.2 Make a fit with the cosine curve as described in the Reference Guide.  You will need 
reasonable starting values for this fit to work properly.  Print the plot with the fit curve and the fit 
parameters as labels for the figure.  Also, histogram the residuals from this fit.  Use the statistics 
function to calculate the standard deviation of the residuals: this, as you just saw, is a measure of 
how well the fit matches the data. 

7.3 Perform another fit to the data: a 7-parameter fit, to a 6th order polynomial. You may need 
to make two plots in order to show both fits.  Print this fit as well.  Find the standard deviation of 
the residuals of this fit.  For your report, discuss which fit actually looks “better” to your eye as a 
representation of the data. Does that correspond to the plot with the smaller standard deviation of 
residuals?  Extra Credit: You could also make a scatterplot of the residuals vs. time.  Ideally, 
there would be no longer any obvious time dependence of the residuals if the fit had captured the 
main time dependence.  Is that the case here? 

7.4 Now cross check of the two estimates of fuel consumption to see if they’re roughly 
equivalent, and how close they are to each other. You can approach this question with the 
techniques you’ve learned: plotting or examining statistics for the column mpg calc/readout, or 
making a scatter plot of the calculated vs. readout miles per gallon and performing a fit.  Choose 
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one of these techniques and find quantitatively, by how many % the two estimates differ 
typically, and how much (in %) individual values vary about the main trend. 

7.5 Extra Credit Questions. How might you study the mileage for highway as compared to city 
driving? The data between Jan 1 and Aug 1 2003 correspond to a time in New Mexico rather 
than Michigan; are there noticeable differences in the data due to the location?  What might 
cause these differences?  What do you think is the capacity of the gas tank?   

7.6 Finishing up: As you exit Kaleidagraph, select "None" in the dialogue box when you are 
asked whether you want to save changes. It is advisable to back up files from the U Drive to a 
USB flash drive if you will need your data for next week (the U drive is not backed up!):  

1) Insert USB flash drive in front of the computer, or on USB extender 
2) Open the U drive by double-clicking on the shortcut 
3) Select in the Address box of this window your flash drive (E: or F:) 
4) Again open the U drive by double-clicking on the shortcut (gives a second window) 
5) Drag the files or folders from the U: window to the flash drive window 
6) Left-click Safely Remove Hardware icon in system tray (bottom right) 
7) Click Remove E; after it says it’s OK to do so, actually remove your flash drive. 
8) Next time: Pick your program | Open |Type E: in “filename” wind 

To save to AFS space, open Internet Explorer to ftp://afs.msu.edu and log in.  Double click on 
the U drive, and copy and paste files or folders between these two windows.  To create folders or 
rename files in this AFS window, you’ll to use need a computer outside the lab. 
 
Finally, Log Out from Windows (this will erase all changes you made except for the files you 
have saved on the U drive or your USB flash drive, and clean up so the next student sees the 
same starting point as you did).  

8. Summary Tables In each lab report you should present your critical results in summary tables 
which organize your results for you, and for your readers.  In many experiments you will also 
need to organize your data recording in tables.  At the beginning, we will give you explicit tables 
to use; as time goes on, you should be able to think through for yourself what tables you will 
need.  For this experiment, your summary tables should look like the following: 

Quantity Mean Standard Deviation 
MPG Calculated   
MPG Cosine Fit Residuals   
MPG Polynomial Fit Residuals   
MPG Calculated / MPG Readout (%)   

 

f(x) fits a b c 
true parabola parameters    
f(x) fit parameters    
fuzzy f(x) fit parameters    
uncertainty of fuzzy fit parameters    
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9. Questions to be discussed in your report: 
9.1 Why should one look at histograms with different bin widths? 

9.2 How well do the two numbers Mean and Standard Deviation summarize your MGP 
histogram data?  What features do they describe, and what do they miss? 

9.3 What do you think causes the structure you see in the finer-binned mpg histogram? 

9.4 Does the Prius go farther on a gallon of gas than the vehicle you are most familiar with?  If 
possible, give a quantitative comparison, and state how reliable your conclusion is. 

9.5Are the parameter “errors” in the parabola fits about the size of the difference between the 
“fuzzed” parameters and the original ones?  Is this what you would expect, roughly? 

9.6 Which fit to the mileage data was better, the cosine fit or the polynomial fit?  On what 
(numerical) basis did you decide?  Was that consistent with your prediction?  

9.7 Which fit, the cosine fit or the polynomial fit, would be more likely to correctly describe the 
data for the next year?  Hint: look at the behavior at the edge(s) of the plot. 

10. Searching for Flaws: Where could the measurements be misleading? Any experimental 
procedure is subject to errors of execution, mistaken assumptions, or biases.  Part of our job as 
experimentalists is to think about them.  At the beginning of the term, we will guide your 
thinking about these, but you should strive to be able to do this more independently as the term 
progresses.  Here we will suggest some sources of uncertainty in the data and procedures.  For 
items in bold italics, hints are given below: but try by yourself first! 

10.1 What would happen to the miles per gallon if the tires were under-inflated?  By about how 
many percent might under-inflation affect the estimated distance traveled? Would under-inflation 
cause a measurement to be too low, or too high? 

10.2 Would tire under-inflation affect the ratio of mpg calculated divided by mpg readout? 

10.3 The calculated mpg depends on the precision of the measurement of gasoline volume by the 
gas station pump.  What do you estimate for the fractional % of uncertainty in the number 
gallons? 

10.4 The calculated mpg in effect assumes that the gas tank is filled back up to the same level 
after each filling.  This is usually determined by the automatic shutoff.  How accurately (in 
gallons) do you think the shutoff valve at different gas stations measures “tank full”?  What % 
uncertainty would this translate to for a typical tank of gas for this car? 

10.5 How accurately (in %) would you guess that a manufacturer would want to have calibrated 
the fuel consumption?  How accurate would it have to be, to be small compared to the 
uncertainties due to tire inflation? 

10.6 From these considerations, and the data, to what % accuracy do you think the mpg is 
known?  For a measurement of 45mpg, how many mpg would this uncertainty be? 

10.7 Is the scatter in the data about the fits larger or smaller than your estimate from 10.6?  If 
larger, what other effects might be causing such variations from one tank to the next? 
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10.8 Is the mpg according to the readout systematically different from the calculated value?  By 
how many % If so, which measurement would you tend to believe more?  Why? 

11. Improvements: What was the muddiest point of the lab?  Where could the write-up be 
improved? Be specific—state exactly where and how should it be improved. 

12. Reading and Homework: Turn these exercises in with your lab report. It's due next 
week even though class isn't meeting to do a lab. Your instructor will discuss how to turn it in. 

Read Taylor chapter 1, 2 (you may skip sections 2.6 and 2.9), 4.2, and 5.1 .  Read section 1.3 
and chapter 2 especially carefully—they give the purpose of uncertainty calculations, to be able 
to make quantitative comparisons between measured values and between measurements and 
predictions.  See also the handout on the important points on uncertainties.  

Homework 1: Work through the Excel Tutorial in the Reference Guide and print out both the 
resulting spreadsheet results, and the formulas.  Do Taylor problems 2.4, 2.6, 4.1, and 5.4.  In 
problem 4.1, use your calculator, Excel, or Kaleidagraph to check your values. 

Hints for section 10: 

10.1 Speedometers are often off by 2 - 5 mph at 65 mph, so a 3 - 8% error in the speedometer is 
not out of the question. However, that’s the speedometer, which is perhaps more complicated 
than the odometer.  The odometer works by counting the revolutions of the tires and converting 
turns into distance traveled.  This assumes the tires are of constant circumference.  The accuracy 
implied by our uncertainty was ≈ 1mi/ 456mi = 0.2% which seems awfully strict when you think 
of the change of shape in the tires when they are fully inflated vs. under-inflated.  You might 
estimate the tire height (diameter) might change 1/2 inch out of about 2 feet, or about 2 %, due to 
changes in tire pressure, from being warm or cold, or over or under-inflated.  (This alone might 
give a 1 mpg apparent decrease for highway driving, which keeps the tires warm and records 
fewer apparent miles (axle revolutions) than actual miles, giving a lowered mpg).  
10.3 For a first estimate use the recording error of .1 gal; for 11.3 gal that’s 0.9% (though the 
pump records more decimal places, that’s all that was recorded in the log). Assume that all 
pumps are calibrated by the state to measure the same within well less than the 0.9 % 
measurement error on a tank (at least we hope so).  What about the definition of a full tank?  Is 
that repeatable from pump to pump?  What is its uncertainty?  Hard to guess again but it might 
be another 0.1 gallon, or perhaps even more.   This latter might not matter so much in the long 
run: if the pump cut off early for one tank, you’d miss some of the gas you actually used for 
those miles.  But the next tank, you’d probably record some gas for miles which really were 
recorded for the previous tank.  Over time it would average out, but this uncertainty would 
contribute to the uncertainty of any single tank. 
10.5 See 10.1 above 
10.7 If the scatter of measurements is large compared to your estimated error (as seen by either 
the calculated vs. readout data, or the size of the fit residuals), then the measurement was 
dominated by sources of uncertainty other than those you have thought about.  These are 
sometimes called uncontrolled variables.  They might not have anything to do with the 
measurement process itself, but rather changes in what is actually being measured.  A driver 
might be more interested in speed than good mileage on a particular trip. Weather, traffic, road 
conditions, or the load carried might vary. 
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Reference Guide for PHY191 
 
 

Bring this Reference Guide to class each week 
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PHY191 Experiment 1:  Introduction                          8/15/2006 Page 9 
 
 

1. Kaleidagraph Essentials 
Histograms: use menus Gallery|Stat|Histogram|pick data|New.   To Change Bin Size: 
Plot|Plot Options|SpecifyingTheBinSize|OK , then Plot|Axis Options|enter new bin size|OK      

Statistics Highlight data column, then Function|Statistics and either write down results and |OK, 
or |Clipboard|OK and then paste where you want them (Plot, Layout, or Word). 

y vs. x scatterplot (x is horizontal!):  Gallery|Linear|Scatter|select x and y variables|NewPlot     

Curve Fitting CurveFit|General|EditGeneral|Add|NewFit|give new fitname in box|Edit|    
Entering equation: say want to fit a parabola y = parabola a + b x + c x2.  Kgraph’s convention 
for the first fit parameter is m1 (and so on).  So you could enter in the Edit box:                        

m1 + m2*x + m3*x^2; m1=1; m2=1; m3=1 
where m1 stands for your parameter a, m2 for b, m3 for c. The extra equations give nonzero 
guesses for the parameters which the fit routine must have to start from.  Now, having entered 
the expression you are fitting, OK|OK|CurveFit|General|fitname|check the box|OK                                                 
If you’d wanted an equation of the form C + a cos (k x + b), you’d use m1+m2*cos(m3*x + m4). 
To display the fit equation, Plot|DisplayEquation.  This shows you the fit parameters, and their 
uncertainties (labeled “errors”). The value of m1 is the best fit value of a, etc.  
Moving it: Click ParamsBlock|Cut(Ctrl-X)|Ctrl-L|Layout|SelectPlot|plot|Paste(Ctrl-V)|Drag 
ParamsBlock;       Ctrl-L is equivalent to Windows|ShowLayout|KgraphLayout 

Plot Resizing: Right-click within plot | SetPlotSize | click both Axis and Frame size | Enlarge 
Frame size Y, but to less than paper size | drag Fit Parameters block to below the plot. 

Residuals: To make a new column in the data window containing fit residuals, immediately after 
you’ve performed the fit (or redone the fit):  CurveFit|General|fitname|View|CopyResiduals.  
Find the right data window by clicking on the small grid in the upper right of the plot window;                             
you can edit the data window column heading by double-clicking it.   

If the function fit doesn’t look much like the data, you probably need to give better initial 
values than 1.  Do this by CurveFit|General|fitname|Define| then edit the initial values in the box: 
     m1 + m2*cos(m3*x + m4); m1=45; m2=10; m3=30; m4=180 
Why might these be better values?  The C constant (m1) should be near the average y value; the 
m2 should be the amount above or below the average; m3 should be such that the range ∆x of 
one cycle of x has ∆x*m3=360 degrees (if Degrees is checked) or 2π if Radians is checked; and 
180 (Degrees) would be appropriate for a maximum the middle of the range. 

Remove a previous fit: CurveFit|General|fitname|Deselect 

Multiple Plots per page:  Windows|ShowLayout|click on layout| then a Layout menu appears.  
Layout|SelectPlot|click on plot| for the plots you want on the page (2 or 3 will be big enough to 
read).  Then Layout|ArrangeLayout| and select say 2 or 3 rows and one column to arrange your 
plots.  You can drag, resize, or delete the plots; add text; or paste a clipboard.  

It’s really best to just jump in, but the Kgraph tutorial (examples 2&4) offer more detail. 
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2. Introduction to EXCEL (and Tutorial) 
This introduction will show you the basics you need for this lab. Open Excel by double-clicking 
the icon with the mouse.  Then open a new spreadsheet by File | New (and possibly Blank 
Workbook).   Files that end in “.xls,” are Excel spreadsheets.  You can copy and paste data 
from the Excel spreadsheet to the Kgraph spreadsheet. Kgraph can open a spreadsheet too, 
and if it’s just data and single-cell column headers in row 1, it will label the columns.   
The Excel spreadsheet is made up of rectangles called “cells.”  To enter text into a cell, click on 
the cell with the mouse, type the desired text, and press Return or Enter.  To execute a formula 
in a cell, you must always first type “=” (an equals sign), followed by the desired formula.  For 
example, to compute 5+6, type “=5+6” into an empty cell and press “Enter.”  The answer, “11,” 
appears in the cell where you entered the formula.  The formula you entered in the cell appears at 
the top of the screen under the menu bar.  This works for any cell:  to see a formula, just click on 
the cell and the formula for that cell appears at the top of the spreadsheet. 
 
Now we will fill a column A labeled X with numbers ranging from 0 to 1.4 in steps of 0.2.  Do 
not take the time to do this all by hand!  You can have Excel do it for you.  In cell A1 enter X 
and type Enter.  In the next cell of the column, A2, enter 0, our first value. Then in A3, we can 
give Excel a formula we want it to follow in order to fill in the rest of the column.  In each cell, 
we want it to add 0.2 to the value in the cell just above.  That will fill in the column in steps of 
0.2.  Therefore in cell A3 enter the formula “=A2+0.2” and press return.  Highlight 7 cells of the 
column, starting with the cell that has the formula in it, A3.  Then go to Edit | Fill | Down and 
then let go of the mouse button.  Your column should be filled in increments of 0.2.   
 
In the next column B (Label it Sin(x) in B1) you are going to compute the sine of X using a 
formula.  In B2 type “=Sin(A2)” and hit Return.  By typing A2 in the parentheses we are telling 
Excel to take the sine of the value (in radians) which it finds in A2.  Then you can use the same 
process as above to “fill-down” the entire column. If you do this just as described above, Excel 
knows to start with A2, take the sine of each successive value in the A-column, and place the 
new value in each successive cell of the B-column.  Now repeat this same procedure, only this 
time for cosine X in the C-column.   

More hints: 
● If in doubt, use parentheses to make sure things get calculated in the right order.  For example, 
3 + 5/2 results in 5.5, but (3 + 5)/2 results in 4.  It would have been better to use 3 + (5/2) in 
Excel for the first case. 
● To check your spreadsheet formulas, type Ctrl-` (that is, hold down the Ctrl key and type the 
` key (which has a ~ above it).  If you now print your spreadsheet, you can see all the formulas.  
Save it with a new name, adjust the column width, and use page setup to print landscape, say to 
fit to 2 pages wide x 1 tall.  You can use Print Preview before printing to check. 
● Typing   Ctrl-` again toggles back to showing the calculated numbers. 
● Instead of typing a cell number (say O27) you can click on the cell while entering the formula. 
● You can change formatting with the % and .00 → .0 and .0 → .00 buttons. 
● The formula   =A17   copies the contents of cell A17 to the cell containing the formula. 
 
Copying formulas:         The menu command Edit | Fill | Down is equivalent to: 
click the cell with the formula   cell will be highlighted, with dark borders 
hover mouse on lower right corner  mouse pointer turns from a hollow to a solid cross 
drag the mouse down over more cells  the formula is “copied” 
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When the formula is copied, the cell references change automatically!  So if your formula in A3 
was A2+.2, when it is filled or dragged down to cell A4, it becomes A3 + .2 ; if you are doing 
the same set of calculations on a whole column of numbers, you can set up the formulas in the 
first row, then highlight and drag down the formulas in several columns at once. 
 
A similar process allows you to copy formulas sideways (across columns), or copy and paste into 
another column. Put 100 in D2.  Next, enter =D2 in D3 to copy D2’s contents.  Now highlight 
A3:A8, hit copy (Ctrl-c) and then move the mouse to D4 and paste (Ctrl-v).  This fills the D 
column with numbers spaced by .2, but starting from 100. 
 
Sometimes this automatic renumbering isn’t what you want to do, so you need to be able to stop 
Excel from adjusting cell numbers.  One way to always refer to single cell is to give it a name.  
Type 10 into cell E1.  Highlight E1, then click your mouse in the name box (it will say E1) left 
of where the formula appears. Type fred there and when you use the name fred in your formulas 
and it will always refer to that specific cell.  Enter in E3 the formula =fred^A3 and copy it down 
through E4:E9.  You should see numbers ranging from 1.58 through 25.12 in the E column. 
 
When your spreadsheet is complete, make sure you save and print! 
 

Common operations in Excel 
you can substitute cells for numbers with these operations 

 
What?  Mathematics  Excel Equation  Value 
Addition  11 + 12  = 11 + 12   23 
Subtraction  29 – 21  = 29 – 21   8 
Multiplication  30 × 15  = 30 * 15   450 
Division  44 / 12   = 44/12   3.66666667 

Example  73
25

43 ×−
×

+  = 3 + (4/(5*2) – (3*7)) 17.6 

Power   6.3   = 6^(.3)   1.7117 
Exponential  e6.1   = exp(6.1)   445.86 
Square Root  22 43 +   = sqrt ( 3^2 + 4^2)  5 
Sine or Cosine Sin(x) or Cos(x) = sin(x)   or = cos(x)  x = .5 (radians): sin = .479 
Pi   Cos (2 π x)  = cos(2*pi()*x)  .809 for x = .1 
 
Operations on groups of cells: use as an example cells   A3…A9  containing   .2, .4, …. 1.4 
The group can be denoted by A3:A9, or you can highlight a group of cells while entering the 
formula 
 
Sum   ∑ ai   = sum(A3:A9)   5.6 
Mean      = average(A3:A9)  0.8 
Standard Deviation    = stdev(A3:A9)   . 316 
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3. Significant Figures 

In calculations, it is always important to distinguish significant from insignificant figures 
in the final presented numbers. The rules in Taylor section 2.2 describe things rather well.  
We add the following comments.  

1. The smallest digit in the final reported value should be of the same order as the 
smallest significant digit of the uncertainty.  Since the error of the measurement is only 
an estimate of the uncertainty of the measurement, we do not need to keep more than the 
two most significant digits in it. Examples:  

Incorrect  Correct 

517.436 m ± 12.34 cm  (avoid mixed units) 517.4 ± 0.1 m or, better, 517.44 ± 0.12 m 

24.3441364 ± 0.002 m/s 24.344 ± 0.002 m/s 

12385 s  ± 241 s 12400 ± 200  s  or 12390 ± 240  s or           
(1.239 ± .024)×104 s or (1.24 ± .02)×104 s 

 
2. Perform intermediate calculations to a few more figures than you know to be 
significant (this avoids inadvertent loss of significance) and apply rule 1 for final results.   
 
Rules 3-5 describe which digits are the minimum that are known to be significant.  These 
rules also help when you have no explicit uncertainty calculation at the end, and are just 
calculating from inputs with a fixed number of significant digits. 
 
3. When adding or subtracting two numbers, the result should have the same number of 
the significant digits after the decimal point as the least precise summand. Example:  

23.5527824.3445.517 =+  
4. When multiplying or dividing, the result should have the same total number of the 
significant digits as the least precise multiplier. Example:  

1234.3 × 23.45 ≈ 28940 
5. For other operations (raising to power, square root, exponent, sine) a rough and ready 
rule is to keep at least as many significant digits in the final result as you had in the input. 
Example:       Sin(3.567 radians) = - .4127 
Complex functions can increase or decrease the number of actual significant digits by 1, 
depending on the function and the argument.  For example 
   Sin(3.567 radians) = - .4127;   Sin(3.568) = -.4136        lost nearly 1 digit: .4127 ± .0009 
  But              √6.567 = 2.5626;         √6.568 = 2.5628       gained 1 digit:    2.5626 ± .0002 
Raising to powers > 1 may lose significant digits, and powers < 1 may gain them. 
 
6. More subtle points: when you average many measurements, the standard deviation of the 
mean becomes small compared to the least significant digit of individual measurements, 
indicating that the mean has more significant digits than the individual measurements.  This will 
normally be covered by following rules 1 and 2.  Similarly, if you wish to calculate a t value to 2 
significant digits (in order to compare it with 2.0, as suggested in the Uncertainty Calculations 
section below), you will need to have estimated your uncertainty to 2 significant digits. 
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  4. Uncertainty Calculations: Critical Things to Know 
Justify your uncertainty:   Give a specific reason you chose δx as the uncertainty for the 
measurement of x.  See examples in Taylor §1.5; §3.1-3.2; and §1.6, §4.1-4.6 for standard 
deviation and standard deviation of a mean for repeatable measurements. 
        
Compatibility (§1.3, 2.4-2.5): The whole point of quantitative measurement with 
uncertainties is to test hypotheses, and compare results.  Say you measure q, and you 
compare it to p (the expected value).  Define the discrepancy as the difference of your result 
from the result expected by some hypothesis: 

 D = q – p = measured - expected       .  
The best way to describe the degree of discrepancy of p and q is in terms of the number of 
standard deviations (the “t value”) of their difference from expectations: 

  t = D / δD    where δD is the uncertainty of D (its standard deviation, for Gaussian 
uncertainties).  
The “two standard deviations” rule says p and q are compatible as long as |t| ≤ 2 .  
Typically δD = √(δq2 + δp2);  or just δq if p is well known (so δp is tiny). Best practice is to 
calculate t, then say something like “the difference is 1.6 times its uncertainty, so the 
measurements are compatible by the 2 standard deviation rule.”  If |t| > 2, we would call p and q 
statistically incompatible, or call their difference statistically significant. To obtain a t value of 2 
significant digits, keep 2 s.f. in uncertainties. 

If your uncertainties are Gaussian, and correctly estimated, and the assumptions (hypothesis) 
leading to the expected value are also correct, a |t| > 2 deviation would occur by chance only 
about 5% of the time.  So large |t| values suggest real disagreement from what you expected, 
while small |t| values are compatible with your hypothesis—or at least not proven to disagree.  
But if you measure poorly (δD is large), your result will be compatible with almost anything: not 
a very useful measurement. 

Occasionally we use a simpler criterion compares |D| with δq + δp (the worst case for δD, but 
allowing only 1 standard deviation difference): this is just “do the error bars touch”. 

We are often also interested in the fractional deviation the measured value from what we 
expected, which is just D/p = (q-p)/p .  The D(%)  (% deviation or % difference) is the same 
thing expressed in percent.  D/p or D(%) is all we can report if we don’t know δD.  But just 
because the percent difference is small, does not necessarily make it insignificantly different 
statistically.  That’s what the t criterion is for.  
 
Know the Uncertainty Calculation Formulae (§3.3-3.7; 3.11) on inside covers of Taylor, and 
how/when to use them.   Some hints: 
For q = x ± y,   x, y, q, dx, dy, and dq all must have the same units (e.g. to add q + dq: error 
bars) 
The fraction uncertainties δq/q, δx/x, δy/y all have NO UNITS (can write as a fraction, or as %, 
but watch the factor of 100!) 

But to get δq, don’t forget to multiply q × (δq/q) 
How to check your calculations to see if they make sense: 
q = x + y          always must have: δq > max (δx , δy) 
q = x*y or x/y always must have δq/q > max (δx/x, δy/y) 
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Independent measurement: no relationship in the imperfections between the measurements; e.g. 
2 students measure the same distance each with a different, but good, ruler.  A measurement 
dominated by a systematic error (same shrunken ruler used by both students) would produce 
results that aren’t independent.  See Chapter 4; needed to apply Chapter 3 formulas. 
Random: you expect to get slightly different values each time you measure it: due to reading 
uncertainties, varying judgments, uncontrollable factors, or inherent properties of the 
measurement. 
 
Standard Deviation and Standard Deviation of the Mean 
The standard deviation ( σ ) is a measure of the uncertainty of any single measurement.  The 
standard deviation of the mean, σm = σ/√N , is a measure of the uncertainty of an average of N 
such measurements.  Clearly, the average is better known than a single measurement. 
 

Examples 
 
q = x/y  Often easiest to do in terms of %, especially since really need uncertainties to only 1 
significant figure (unless you want a t value at the end; for simplicity do just one decimal place 
here) 
         x = 10      δx = .1     y = 2.7       δy = .2    so q = 3.7 
            δq/q = √(1% + 8%) ≈ 8%   so  δq ≈ .08×q ≈ .3  (notice 8% → .08, the factor of 100) 
 
Whip out your calculator now: Let’s try    r=10     and    δr = .1, so what’s the fractional error for 
r?      

δr/r = 1%  Now say q= r2 then what’s δq/q = ?  
 
From Eq 3.23, 3.26:   

δq / q = ( |dq/dr| δr ) / r2 = 2 δr / r = 2%     
For comparison, you can calculate changes in q directly (the most general way, rather than the 
Chapter 3 formulas, which rely on first derivative approximations):  

(q + δq)/q = (r+δr)2 / r2 = 102.01/100 = 1.0201 =  (q + δq) / q , so δq/q = 2.01%  (same as 
δq → 0) 
 
A More Complicated Example Calculation (See Step by Step: Taylor Chapter 3.8) 
 
q = x2 y + z1/ 3     x = 10 ± .1     y = 20 ± .2       z = 10000 ± 1800 

δx/x = 1% δy/y = 1%   δz/z = 18% 
 
let w = z1/ 3  = 15.8    x2y =2000    and q = 2015.8 
 
Let’s start with the product term :   x2y  
 
δ (x2y) / (x2y) =  √{ (δx2/x2)2 + (δy/y)2 } =   √{ (2 ×1%)2 + (1%)2 } = 2.2 %  ≈ 2%  
 notice we have used δ x2 / x2 = 2 δx/x: the 2 goes inside the parentheses! 
 
so δ x2y = x2y × (δ x2y / x2y) = 2000 × (2%) = 40 
 
Now δw/w = 1/3 (δz/z) = 1/3  × 18%= 6%, so   δw = 6% × w  ≈ .9  
 notice that 6% is NOT rounded up to 10%, nor is .948 rounded up to 1 
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 in each instance we keep the first significant digit, though in the middle of a long 
calculation, it might make sense to keep one extra digit. 
 Notice also that w is better known than z is, and in fact has more significant digits: 15.8 ± 
.9 compared to (10.0 ± 1.8) × 103  ! 
 
Finally, since q = x2y + w,  δq= √ { (40)2 + (.9)2 } ≈ 40 
 
So q = 2015.8 ± 40, or 2020 ± 40 = (2.02 ± .04) × 103 after significant figures. 
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5. Log Plots and Guessing Functional Relationships 
In Kgraph, from Plot | Axis Options you can choose Linear (default) or Log (logarithmic) for 
either the x or y axis.  Let’s see how this might help you:  For this discussion, we will assume 
logarithmic means natural logarithms, log to the base e. See also Taylor §8.6 .  In Kgraph you 
can select Log from Plot | Axis Options, or make a new data column with, e.g.  ln(c5) or log(c5).  
When using log scales, you should also use Plot | Axis Options to choose minima and maxima so 
that your displayed data fills much of the plot area, not just a small corner. 
 
1) Semi-log plots 
Suppose the true relationship is something like y = y(x) = e-ax  (the constant a might be positive 
or negative).  If you plot y on a log scale and x on a linear scale, this is a semi-log plot 
(logarithmic on only one axis).  Then you would be looking at Ln(y) vs. x, and substituting the 
true relationship y(x), your plot would display -ax vs. x.   
That is, exponential relationships produce straight lines on a semi-log plot and the slope is 
equal to the coefficient of x in the exponent.  To find the slope, you could perform either the 
nonlinear fit y = Exp(- a x), or a linear fit to the semi-log plot, fitting Ln(y) = -a x.  These fits 
will give somewhat different answers as equal weighting in y assumes different uncertainties 
than equal weighting in Ln(y). 
 
2) Log-Log plots 
Suppose now the relationship between y and x is of the form yp = a xq .  A linear relationship ( y 
= a x, with no additive constant) is a special case with  p = q = 1.  Assuming y and x are positive, 
you can take the p-th root and recast of this relationship as y = y(x) = b xu, where b = a 1/p and u 
= q/p.  
 
If you plot both x and y on a logarithmic scale, it’s a log-log plot.   Then you would be looking at 
 Ln(y) vs. Ln(x) , which, on substituting the true dependence y(x) would yield  
 Ln(b) + u Ln(x)   vs. Ln(x) 
That is, power relationships of the form yp = a xq  produce straight lines on a log-log plot.   
The slope is the power u, to which x is raised to give y.  For y = x2, on a linear plot you get a 
parabola—not straight.  But a log y vs. log x plot (for x > 0 !) gives a straight line of slope u=2. 
 
You can find this slope by rise over run by measuring distances directly on the graph: 
 u =  [ Ln(y1) – Ln(yo) ] / [Ln(x1) – Ln(x0) ]   
This works directly from the plot, as long as the y and x scales are the same.  It’s the same as 
 u = Ln(y1/yo) / Ln(x1/xo) 
which makes it obvious that the units cancel, and all that matters is that a given factor (e, or 10, 
say) takes up the same amount of space on the y and x axes.  You could also use either formula 
with coordinates of points on the line. 
Or you could perform either the nonlinear fit y = b xu, or a linear fit to the log-log plot, fitting  
Ln(y) =b + u Ln(x).  These fits will give somewhat different answers as equal weighting in x or y 
assumes different uncertainties than equal weighting in Ln(x) or Ln(y). 
To really test these relationships well, you should ideally: 
 Compare the fit quality with an alternative, such as a straight line 
 Have more than 3 data points 
 Have data covering at least a factor of e2 (= 7.4) to 10 in range of x and y. 
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6. Using a Vernier Caliper  
 
A vernier caliper consists of a high quality metal ruler with a special vernier scale attached which 
allows the ruler to be read with greater precision than would otherwise be possible.  The vernier 
scale provides a means of making measurements of distance (or length) to an accuracy of a tenth 
of a millimeter or better.  Although this section will be devoted to the use of the vernier caliper, 
vernier scales can also be used to make accurate measurements of other quantities, such as 
angular displacements. 
 

JAWS

SAME DISTANCE AS
BETWEEN JAWS

INCH

CM

VERNIER SCALE

RULE

0 108642

0

0 5 10 15 20 25

1 2 3 4 5 6 7
1 2

987654321

 
 

Figure 1:  Vernier Caliper 
 
Looking at the vernier caliper in Fig. 1, notice that while the units on the rule portion are similar 
to those on an ordinary metric ruler, the gradations on the vernier scale are slightly different.  
The number of vernier gradations is always one more than the number on rule for the same 
distance.  The line on the vernier which is aligned with one on the rule tells us the fraction of the 
units on the rule.  
To use the vernier caliper: 
(1) Roll the thumb wheel until the jaws are completely closed (touching each other). Now 
check whether the caliper is reading exactly zero.  If not, record the caliper reading, and subtract 
this number from each measurement you make with the caliper. 
(2) Use either the inside edges of the jaws, or the outside edges of the two prongs at the top of 

the caliper to make your measurement.   Do not use the tips of the prongs.  Roll the thumb 
wheel until these surfaces line up with the end points of the distance you are measuring. 

(3) To read the caliper: 
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 (a) record the numbers which correspond to the last line on the rule which falls before the 

index line (marked as 0) on the vernier scale.  In Fig 1, this would be 1.4 cm since the 
index line falls after the 1.4 cm line and before the 1.5 cm line. 

 (b) count to the right on the vernier scale until you reach a vernier line which lines up with 
a line on the rule and record the number of this vernier line as your last digit.  In Fig 1, 
it is the vernier line marked 4 (rather than the 4.5 line, say) which is aligned with one 
on the rule.  The full vernier scale corresponds to one small division on the main scale, 
that is, .1 mm, so the vernier tells us to add .4 * .1 = .04cm, so the whole distance is 
1.440 cm. 

Alas, the inch scale vernier of Fig 1 is not marked correctly; the correct corresponding reading 
would be .567 inches, so the inch vernier should have lined up at about 17 instead of 25: .55 
inches + .017inches). 
 
The following examples show vernier scales similar to that on the vernier caliper, to allow you to 
test your ability to read a vernier caliper. 
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7. Writing a good lab report 

The Notebook:  Write what section number (say 4.1.1) of the lab write-up you are working on! 
Record your original measurements (with units) in your lab book. Include your estimates of 
uncertainty and their justification for the measured quantities (it might be more uncertain than 
the finest you can read the instrument!).   
Answer all questions posed by the lab write-up, either as you proceed, in the notebook, or in your 
report (again, with a write-up section number for reference.  All your work should be in the lab 
notebook - including any mistakes or duplicate measurements.  Your lab notebook records what 
exactly you did, including any false steps. Errors should be neatly crossed out and a note should 
be recorded in the lab book indicating the nature of the mistake.  This is the method used by 
practicing scientists for the recording of their experimental measurements. Write in pen—no 
pencils or erasers in lab. Write legibly; it can’t be graded if it can’t be read. 
 

Analysis of results with Kaleidagraph and Excel 
Calculate derived quantities from the original data and uncertainties 
Plot data with correct labeling and uncertainties (error bars) 
Class info in upper right corner, a descriptive title, labeled axes with units, etc. 
Titles should distinguish graphs from each other. 
Check that your results make sense: smooth graphs; consistency in tables 
Find best fit lines, curves, and fit results as needed 
 

Testing for statistical consistency: learn to use formulae in Taylor 
Use uncertainties to compare two results (calculate the t value) 
Use uncertainties to compare a result with an expected value (calculate the t value) 

 
Lab reports 

The goal is to clearly communicate your analysis and results.  You do not have to do everything 
in Word: by hand is fine, provided it can be read.  Or you can do text in Word, but write in 
equations and sample calculations to save time.  Your report will consist of: the report proper 
(written or typed);  pages from your lab notebook (the duplicate sheets or the photocopies) and 
printouts of spreadsheets or graphs.  
In the upper right hand corner of the first page put:   

Your name 
Your partner’s name 
PHY191 section xxx (your section’s number) 
Experiment # 
 

DO NOT make your grader hunt for things! Follow the section order of the lab write-up. 
Staple things in an order so the report can be read.  Notebook pages and figures should be near 
where they are referred to in the text.  Use the order: report text for a section, then notebook 
pages, then figures, then spreadsheets, then back to text for the next section; it won’t be 
perfect, but the idea is to make it as easy to follow as possible.  Section numbers from the lab 
write-up for answers to questions are critical; it is good to add them to printouts as well.  If 
there’s more than one figure in a section, to refer to them in the text you could either assign 
figure numbers (Fig 6 and 7) or call them something like Fig 5.4.3 A and 5.4.3 B. 
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For each part of experiment, in the order given by the lab manual, your report should have  
1. Formulae and a sample calculation for each calculation type 

a. In words, why did you choose this formula (e.g. “independent random errors”) 
b. The sample calculation is required  

2. Use summary tables to organize results (often, a spreadsheet printout) .  These really help 
you to focus on the final results. 

a. Give a summary table for each part of lab 
b. Use an overall summary at the end if comparing results across parts 

For example: 
 δx(cm) L(cm) W(cm) H(cm) Mass(g) V(cm^3) Density 

g/cm^3 
Material Expected 

Density 
Ruler .1 1.5 2.0 1.3 100.0±.1 3.9±.4 2.5±.3 Aluminum 2.7 
Caliper .01 1.47 2.03 1.31 100.0±.1 3.92±.04 2.61±.07   
 
3. Note whether results differed from your predictions; why? 
 
At the end of your report, include the final discussion of the experiment: 
 
Answer the questions asked in the lab manual 
Make quantitative compatibility comparisons where relevant  

(for multiple measurements or experiment vs. theory) 
What do you conclude based on the above comparisons? 
What did you learn about physics from this lab? About procedure? 
Give the muddiest point(s) of the lab:Give specifics!  

not “this was bogus” but  
“the readings didn’t cover standard deviation but it was needed in part 4b” 
or. suggest an improvement to the techniques, the lab manual, or Taylor 

 



PHY191 Experiment 1:  Introduction                          8/15/2006 Page 22 
 

8. A Sample Report  
 
Below is a good example of a lab report for 191 on an experiment we aren’t doing.  It is not 
perfect, but should give you a feeling for what a good lab report might look like.  The 
“Objectives” section isn’t usually needed. Here it replaces a lab write-up, to help you read the 
report.  Notice: 

Equations and sample calculations 
Lab book pages, tables, and graphs inserted as needed in the text 
Good labeling and referencing of tables and figures 
 

I would have liked clearer comparisons of the measured values and expectations, along the lines 
of: 
 
Page 29 or 31  We expect g = 9.804, and measure 9.780 ± .019 cm/s2 . Our measurement of g is 
consistent with expectations since the t value of the discrepancy is t = -.024/.019 = -1.3 standard 
deviations, less than 2 standard deviations from the expected result. 
 
Page 35  as the report text says, the rate of change is compatible with 0; better would have been 
to say:  Then the coefficient is -.021 ± .017 J/kg s, which, though it is nonzero, is also 
statistically consistent with zero (t = -1.2)  
 
Page 36  Ideally the student would have had time to perform the fits with a custom function, in 
which case the uncertainty in the parameter would have been available.  Then they might have 
written: 
Here is a table with the various parameters of the quadratic fits, and their sums. The sum of each 
is expected to be zero.  The uncertainties on the sum of the terms come from:  

δ(a  + b)  = √ { (δa)2 +  (δb)2} and t = (a + b - 0) / δ(a  + b)   
 

Term PE/m KE/m sum Error(sum) t 
constant 0 0.015 0.015 0.02 0.7
Linear -2.06 2.18 0.12 0.07 1.7
quadratic -47.86 47.52 -0.34 0.13 -2.6

 
The constant and linear terms are consistent with zero, but the quadratic term is not consistent 
with being zero, because |t| > 2. 
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