Review of Some Ideas...

Specific Heats

\[Q = cm \Delta T \]

Latent Heat

(Heat of Transformation)

\[Q = mL \]

\[L_V \quad \text{and} \quad L_P \]

\{ Changes of Phase \}

System of Interest...

\[W \] by gas

\[\frac{W}{P} \]

\[V \]

\[W_{gas} = \int_A^B PdV \]

1st Law of Thermodynamics

\[\Delta Q = \Delta U + \Delta W \]

State Functions

\[u, T, p, v \]

Internal energy characterized by temperature
PARTICULAR FOCUS

1) Isothermal processes, \(\Delta T = 0 \Rightarrow \Delta U = 0 \)
\[\Delta Q = \Delta W \]

2) Adiabatic processes, \(\Delta Q = 0 \Rightarrow \Delta U = -\Delta W \)

3) Cycles

IDEAL GAS

- Identical, point masses
- Numerous

\[PV = n \frac{2}{3} \langle K \rangle \]
\[PV = nRT \]
\[PV = NkT \]

\(\text{T is measure of } \langle K \rangle \)
Work done by ideal gas

\[\Delta W = \int_A^B \frac{nRT}{V} \, dV = nRT \ln \frac{V_B}{V_A} \]

Molar specific heats

\[\Delta Q = nC_v \Delta T \bigg|_V = \frac{3}{2} nRT \text{ ideal} \]
\[\Delta Q = nC_p \Delta T \bigg|_P = \frac{5}{2} nRT \text{ ideal} \]

\[C_p = C_v + R \]

Adiabatic processes

\[PV^\gamma = \text{constant} \quad \gamma = \frac{C_p}{C_v} \]

\[W = \frac{P_B V_B - P_A V_A}{1 - \gamma} \]
P-V-T Diagrams

Ideal Gas:

For non-ideal substances, phase transitions begin to be an issue...
MAKING IT REAL...

- finite sized molecules:
 - \(V \) - overall volume
 - \(b \) - volume occupied by molecules
 - \(V \rightarrow V-b \)
- short-distance attraction
 - \(P \rightarrow P + a/V^2 \)

\[
\left(P + \frac{a}{V^2} \right)(V-b) = nRT
\]

\(a \) and \(b \) are measurable constants.
\[EV = \text{const} \]

\[\frac{P_2}{V} = \frac{P_2}{V_2} = \frac{nR}{V} \]

\[\frac{P_1}{T_1} = \frac{P_2}{T_2} = \frac{\text{nR}}{V} \]

\[P_2 = P_1 \left(\frac{T_2}{T_1} \right) - 4 \]
2nd "LAW" OF THERMODYNAMICS

much subtly here... start gently!

TWO MOVIES:

- KINEMATICS MOVIE (bouncing ball) WORKS
 forward & backward -- equations time-invariant

- FRICTION MOVIE (block sliding down) DOESN'T
 the sliding block always gets hotter, forward
 or backwards in time -> an "arrow of time"
IRREVERSIBILITY...

- a feature of any process that generates heat
- things run down!

- THE FIRST LAW OF THERMODYNAMICS DOES NOT INCLUDE THIS
 waddling up to a snow drift to warm
 yourself is consistent with the 1st law
 ... but nature doesn't work this way...!

THERMODYNAMICS IS ONE-WAY
ESTABLISHES A DIRECTION
FOR TIME!

file this thought for a bit...
HEAT ENGINES

• Any device which converts thermal energy into mechanical energy.

• ALL ARE THE SAME:
 1. Heat is absorbed from a source at high T
 2. Work is done by the engine
 3. Waste heat is expelled to a cooler source

heat taken out to condense and re-use

Lots of devices take heat → work
cannon

“Engine” means a cyclical process
over & over again...
PERECT

All heat absorbed from the source is used for work.

HERE... the engine is attached to the heat source. The engine's working substance is always at T_H.

From 1st Law:

$$\Delta U = \Delta Q - \Delta W \Rightarrow \Delta Q_H = \Delta W$$

Since $\Delta T = 0$

So

$$\Delta U = 0$$
Because the engine is cyclical... it goes back to its original state... \(T_i = T_f \)

So \(U_i = U_f \) \(\Rightarrow \) \(\Delta U_{net} = 0 \)

\[\Delta Q = \Delta U + \Delta W \]

\[Q_H - Q_c = W_{net} \]
THERMAL EFFICIENCY

\[\varepsilon = \frac{\text{what you get}}{\text{what you paid}} \]

\[\varepsilon = \frac{W}{Q_H} \]

\[\varepsilon = \frac{Q_H - Q_c}{Q_H} = 1 - \frac{Q_c}{Q_H} \]

(Note: here \(Q_c \) is a positive number... in fact since heat leaves... \(Q_c \) is negative)

\[Q_{\text{net}} = Q_H + Q_c \]

\[= Q_H - |Q_c| \]

thermal efficiencies are not huge...

\[\varepsilon_{\text{automotive}} \sim 20\% - 30\% \]

\[\varepsilon_{\text{Diesel}} \sim 30\% - 40\% \]
PERFECT REFRIGERATOR

\[Q_H \]

\[Q_c \]
Such a perfect machine is impossible...

one of the many equivalent statements of
the Second Law of Thermodynamics.

2nd: It is impossible to construct a heat
gengine that, operating in a cycle,
produces no other effect than the
absorption of thermal energy from
a reservoir and the performance
of an equal amount of work.

("Kelvin-Planck Statement")

NEED TO "WASTE" SOME HEAT
A HEAT ENGINE IN "REVERSE"

Work must be done on the engine.

\[Q_H + Q_C = W \]
\[-Q_H = Q_C - W \]
\[|Q_H| = Q_C + W \]

\(Q_H \) and \(W \) are negative in the system (engine).

Heat leaving hot > heat leaving cold
Performance Coefficient

\[K = - \frac{\Delta C_p}{W} = - \frac{\Delta C_p}{\Delta H + \Delta C_p} = \text{COP} \]

2nd Law: It is impossible to make a refrigerator in a cycle, to produce no other effect than to transfer thermal energy from a cold object to a hot object.

\[\text{COP} \neq \infty \]
Wotsamuch
ENGINE

HOT RESERVOIR
T_h

ENGINE

COLD RESERVOIR
T_c
Refrigerator

Some Freon family *"refrigerant* fluid

Low temperature
Low pressure

High temperature
High pressure

Heat Pump \Rightarrow refrigerator, inside-out.

* not any more!